
SDCC Compiler User Guide

SDCC 4.4.1
$Date:: 2024-01-29 #$

$Revision: 14650 $

Contents

1 Introduction 7
1.1 About SDCC . 7
1.2 SDCC Suite Licenses . 8
1.3 Documentation . 9
1.4 Typographic conventions . 9
1.5 Compatibility with previous versions . 9
1.6 System Requirements . 12
1.7 Other Resources . 12

2 Installing SDCC 13
2.1 Configure Options . 13
2.2 Install paths . 16
2.3 Search Paths . 16
2.4 Building SDCC . 18

2.4.1 Building SDCC on Linux . 18
2.4.2 Building SDCC on Mac OS X . 19
2.4.3 Cross compiling SDCC on Linux for Windows . 19
2.4.4 Building SDCC using Cygwin and Mingw32 . 19
2.4.5 Building SDCC Using Microsoft Visual C++ 2010 (MSVC) 20
2.4.6 Windows Install Using a ZIP Package . 21
2.4.7 Windows Install Using the Setup Program . 21
2.4.8 VPATH feature . 21

2.5 Building the Documentation . 22
2.6 Reading the Documentation . 22
2.7 Testing the SDCC Compiler . 22
2.8 Install Trouble-shooting . 23

2.8.1 If SDCC does not build correctly . 23
2.8.2 What the ”./configure” does . 23
2.8.3 What the ”make” does . 23
2.8.4 What the ”make install” command does. 24

2.9 Components of SDCC . 24
2.9.1 sdcc - The Compiler . 25
2.9.2 sdcpp - The C-Preprocessor . 25
2.9.3 sdas, sdld - The Assemblers and Linkage Editors . 25
2.9.4 ucsim_51, ucsim_z80, ucsim_stm8 etc. - The Simulators 25
2.9.5 sdcdb - Source Level Debugger . 25

3 Using SDCC 26
3.1 Standard-Compliance . 26

3.1.1 ISO C90 and ANSI C89 . 26
3.1.2 ISO C95 . 27
3.1.3 ISO C99 . 27
3.1.4 ISO C11 and ISO C17 . 27
3.1.5 ISO C23 . 27
3.1.6 Embedded C . 28

1

CONTENTS CONTENTS

3.1.7 Implementation-defined behavior . 28
3.1.7.1 Translation . 28
3.1.7.2 Environment . 28
3.1.7.3 Identifiers . 28
3.1.7.4 Characters . 28
3.1.7.5 Integers . 28
3.1.7.6 Floating point . 28
3.1.7.7 Arrays and Pointers . 28
3.1.7.8 Hints . 29
3.1.7.9 Structures, unions, enumerations and bit-fields 29
3.1.7.10 Qualifiers . 29
3.1.7.11 Preprocessing directives . 29
3.1.7.12 Library functions . 29
3.1.7.13 Architecture . 30

3.2 Compiling . 30
3.2.1 Single Source File Projects . 30
3.2.2 Postprocessing the Intel Hex file . 30
3.2.3 Projects with Multiple Source Files . 31
3.2.4 Projects with Additional Libraries . 31
3.2.5 Using sdar to Create and Manage Libraries . 32

3.3 Command Line Options . 32
3.3.1 Processor Selection Options . 32
3.3.2 Preprocessor Options . 33
3.3.3 Optimization Options . 33
3.3.4 Other Options . 34
3.3.5 Linker Options . 37
3.3.6 MCS51 Options . 37
3.3.7 DS390 / DS400 Options . 38
3.3.8 Options common to all z80-related ports (z80, z180, r2k, r3ka, sm83, tlcs90, ez80_z80) . . 38
3.3.9 Z80 Options (apply to z80, z180, r2k, r3ka, tlcs90, ez80_z80) 39
3.3.10 SM83 Options . 39
3.3.11 STM8 Options . 39
3.3.12 MOS6502 Options (apply to mos6502, mos65c02) . 39
3.3.13 Intermediate Dump Options . 39
3.3.14 Redirecting output on Windows Shells . 39

3.4 Environment variables . 40
3.5 SDCC Language Extensions . 40

3.5.1 MCS51/DS390 intrinsic named address spaces . 40
3.5.1.1 __data / __near . 40
3.5.1.2 __xdata / __far . 41
3.5.1.3 __idata . 41
3.5.1.4 __pdata . 41
3.5.1.5 __code . 41
3.5.1.6 __bit . 42
3.5.1.7 __sfr / __sfr16 / __sfr32 / __sbit . 42
3.5.1.8 Pointers to MCS51/DS390 intrinsic named address spaces 42
3.5.1.9 Notes on MCS51 memory layout . 43

3.5.2 Z80/Z180/eZ80 intrinsic named address spaces . 44
3.5.2.1 __sfr (in/out to 8-bit addresses) . 44
3.5.2.2 __banked __sfr (in/out to 16-bit addresses) . 44
3.5.2.3 __sfr (in0/out0 to 8 bit addresses on Z180/HD64180) 44

3.5.3 SM83 intrinsic named address spaces . 44
3.5.3.1 __sfr . 44

3.5.4 HC08/S08 intrinsic named address spaces . 44
3.5.4.1 __data . 44
3.5.4.2 __xdata . 44

2

CONTENTS CONTENTS

3.5.5 PDK14/PDK15 intrinsic named address spaces . 45
3.5.5.1 __sfr . 45
3.5.5.2 __sfr16 . 45

3.5.6 MOS6502 intrinsic named address spaces . 45
3.5.6.1 __zp/__data /__near . 45
3.5.6.2 __xdata /__far . 45

3.5.7 Non-intrinsic named address spaces . 45
3.5.8 Absolute Addressing . 46
3.5.9 __sdcc_external_startup . 47
3.5.10 Preserved register specification . 47
3.5.11 Binary constants . 47
3.5.12 Returning void . 47
3.5.13 Omitting promotion on arguments of vararg function (does not apply to pdk13, pdk14, pdk15) 47

3.6 Parameters and Local Variables . 48
3.7 Overlaying . 48
3.8 Interrupt Service Routines . 49

3.8.1 General Information . 49
3.8.1.1 Common interrupt pitfall: variable not declared volatile 49
3.8.1.2 Common interrupt pitfall: non-atomic access 49
3.8.1.3 Common interrupt pitfall: stack overflow . 49
3.8.1.4 Common interrupt pitfall: use of non-reentrant functions 50

3.8.2 MCS51/DS390 Interrupt Service Routines . 50
3.8.3 HC08 Interrupt Service Routines . 50
3.8.4 Z80, Z180 and eZ80 Interrupt Service Routines . 50
3.8.5 Rabbit 2000, 3000 and 3000A Interrupt Service Routines 51
3.8.6 SM83 and TLCS-90 Interrupt Service Routines . 51
3.8.7 STM8 Interrupt Service Routines . 51

3.9 Enabling and Disabling Interrupts . 51
3.9.1 Critical Functions and Critical Statements . 51
3.9.2 Enabling and Disabling Interrupts directly . 52
3.9.3 Semaphore locking (mcs51/ds390) . 52

3.10 Functions using private register banks (mcs51/ds390) . 53
3.11 Inline Assembler Code . 53

3.11.1 Inline Assembler Code Formats . 53
3.11.1.1 Old __asm ... __endasm; Format . 53
3.11.1.2 New __asm__ (”inline_assembler_code”) Format 53

3.11.2 A Step by Step Introduction . 54
3.11.3 Naked Functions . 56
3.11.4 Use of Labels within Inline Assembler . 57

3.12 Support routines for integer multiplicative operators . 57
3.13 Floating Point Support . 58
3.14 Library Routines . 58

3.14.1 Compiler support routines (_gptrget, _mulint etc.) . 59
3.14.2 Stdclib functions (puts, printf, strcat etc.) . 59

3.14.2.1 <stdio.h> . 59
3.14.2.2 <malloc.h> . 60

3.14.3 Math functions (sinf, powf, sqrtf etc.) . 60
3.14.3.1 <math.h> . 60

3.14.4 Other libraries . 60
3.15 Memory Models . 61

3.15.1 MCS51 Memory Models . 61
3.15.1.1 Small, Medium, Large and Huge . 61
3.15.1.2 External Stack . 61

3.15.2 DS390 Memory Model . 61
3.15.3 STM8 Memory Models . 61
3.15.4 MOS6502 Memory Models . 62

3

CONTENTS CONTENTS

3.16 Pragmas . 62
3.17 Defines Created by the Compiler . 65

4 Notes on supported Processors 66
4.1 MCS51 variants . 66

4.1.1 pdata access by SFR . 66
4.1.2 Other Features available by SFR . 66
4.1.3 Bankswitching . 66

4.1.3.1 Hardware . 67
4.1.3.2 Software . 67

4.1.4 MCS51/DS390 Startup Code . 67
4.1.5 Interfacing with Assembler Code . 69

4.1.5.1 Global Registers used for Parameter Passing 69
4.1.5.2 Register usage . 70
4.1.5.3 Assembler Routine (non-reentrant) . 70
4.1.5.4 Assembler Routine (reentrant) . 71

4.2 DS400 port . 71
4.3 The Z80, Z180, Rabbit 2000, Rabbit 2000A, Rabbit 3000A, SM83 (GameBoy), eZ80, TLCS-90

and R800 ports . 72
4.3.1 Startup Code . 72
4.3.2 Rabbit ports . 72

4.3.2.1 Rabbit wait states . 72
4.3.3 Z80, Z180, Z80N and R800 calling conventions . 72

4.3.3.1 Z80 SDCC calling convention, version 1 . 72
4.3.3.2 Z80 SDCC calling convention, version 0 . 73

4.3.4 Rabbit 2000, Rabbit 2000A, Rabbit 3000A, eZ80 and TLCS-90 calling conventions 74
4.3.4.1 Rabbit SDCC calling convention, version 1 . 74

4.3.5 SM83 calling conventions . 75
4.3.5.1 SM83 SDCC calling convention, version 1 . 75
4.3.5.2 SM83 SDCC calling convention, version 0 . 76

4.3.6 Small-C calling convention . 76
4.3.7 Complex instructions . 76
4.3.8 Unsafe reads . 76
4.3.9 Z80 banked calls . 76

4.4 The HC08 and S08 ports . 77
4.4.1 Startup Code . 77

4.5 The STM8 port . 77
4.5.1 Calling conventions . 77

4.5.1.1 SDCC calling convention, version 1 . 77
4.5.1.2 SDCC calling convention, version 0 . 77
4.5.1.3 Raisonance calling convention . 77
4.5.1.4 IAR calling convention . 77
4.5.1.5 Cosmic calling convention . 78

4.6 The PIC14 port . 78
4.6.1 PIC Code Pages and Memory Banks . 79
4.6.2 Adding New Devices to the Port . 79
4.6.3 Interrupt Code . 80
4.6.4 Configuration Bits . 80
4.6.5 Linking and Assembling . 80
4.6.6 Command-Line Options . 81
4.6.7 Environment Variables . 81
4.6.8 The Library . 81

4.6.8.1 Enhanced cores . 81
4.6.8.2 Accessing bits of special function registers . 82
4.6.8.3 Naming of special function registers . 82
4.6.8.4 error: missing definition for symbol “__gptrget1” 82
4.6.8.5 Processor mismatch in file “XXX”. 82

4

CONTENTS CONTENTS

4.6.9 Known Bugs . 82
4.6.9.1 Function arguments . 82
4.6.9.2 Regression tests fail . 82

4.7 The PIC16 port . 82
4.7.1 Global Options . 84
4.7.2 Port Specific Options . 84

4.7.2.1 Code Generation Options . 84
4.7.2.2 Optimization Options . 85
4.7.2.3 Assembling Options . 85
4.7.2.4 Linking Options . 85
4.7.2.5 Debugging Options . 85

4.7.3 Environment Variables . 86
4.7.4 Preprocessor Macros . 86
4.7.5 Directories . 86
4.7.6 Pragmas . 86
4.7.7 Header Files and Libraries . 88
4.7.8 Header Files . 88
4.7.9 Libraries . 89
4.7.10 Adding New Devices to the Port . 89
4.7.11 Memory Models . 90
4.7.12 Stack . 90
4.7.13 Functions . 91
4.7.14 Function return values . 91
4.7.15 Interrupts . 91
4.7.16 Generic Pointers . 92
4.7.17 Configuration Bits . 92
4.7.18 PIC16 C Libraries . 93

4.7.18.1 Standard I/O Streams . 93
4.7.18.2 Printing functions . 94
4.7.18.3 Signals . 94

4.7.19 PIC16 Port – Tips . 95
4.7.19.1 Stack size . 95

4.7.20 Known Bugs . 95
4.7.20.1 Extended Instruction Set . 95
4.7.20.2 Regression Tests . 95

4.8 The MOS6502 port . 95
4.8.1 Startup Code . 96

5 Debugging 97
5.1 Debugging with SDCDB . 98

5.1.1 Compiling for Debugging . 98
5.1.2 How the Debugger Works . 98
5.1.3 Starting the Debugger SDCDB . 98
5.1.4 SDCDB Command Line Options . 99
5.1.5 SDCDB Debugger Commands . 99
5.1.6 Interfacing SDCDB with DDD . 101
5.1.7 Interfacing SDCDB with XEmacs . 101

5.2 Debugging with other debuggers (e.g. GDB): ELF / DWARF . 102

6 TIPS 103
6.1 Porting code from or to other compilers . 104
6.2 Tools included in the distribution . 104
6.3 Documentation included in the distribution . 105
6.4 Communication online at SourceForge . 106
6.5 Related open source tools . 106
6.6 Related documentation / recommended reading . 106
6.7 Application notes specifically for SDCC . 107

5

CONTENTS CONTENTS

6.8 Some Questions . 107

7 Support 108
7.1 Reporting Bugs . 108
7.2 Requesting Features . 109
7.3 Submitting patches . 109
7.4 Getting Help . 109
7.5 ChangeLog . 109
7.6 Subversion Source Code Repository . 109
7.7 Release policy . 109
7.8 Quality control . 109
7.9 Examples . 110
7.10 Use of SDCC in Education . 110

8 SDCC Technical Data 111
8.1 Optimizations . 111

8.1.1 Sub-expression Elimination . 111
8.1.2 Dead-Code Elimination . 111
8.1.3 Copy-Propagation . 112
8.1.4 Loop Optimizations . 112
8.1.5 Loop Reversing . 113
8.1.6 Algebraic Simplifications . 113
8.1.7 ’switch’ Statements . 113
8.1.8 Bit-shifting Operations. 115
8.1.9 Bit-rotation . 115
8.1.10 Nibble and Byte Swapping . 115
8.1.11 Getting a Bit . 116
8.1.12 Higher Order Byte / Higher Order Word . 117
8.1.13 Placement of Bank-Selection Instructions . 117
8.1.14 Lifetime-Optimal Speculative Partial Redundancy Elimination 118
8.1.15 Register Allocation . 118
8.1.16 Peephole Optimizer . 118

8.2 Cyclomatic Complexity . 120
8.3 Retargetting for other Processors . 120

9 Compiler internals 122
9.1 The anatomy of the compiler . 122
9.2 A few words about basic block successors, predecessors and dominators 128

10 Acknowledgments 129

6

Chapter 1

Introduction

1.1 About SDCC
SDCC (Small Device C Compiler) is free open source, retargettable, optimizing standard (ANSI C89 / ISO
C90, ISO C99, ISO C11 / ISO C17) C compiler suite originally written by Sandeep Dutta designed for 8 bit
Microprocessors. The current version targets Intel MCS51 based Microprocessors (8031, 8032, 8051, 8052, etc.),
Dallas DS80C390 variants, NXP (formerly Freescale/Motorola) HC08 based (hc08, s08), Zilog Z80 based MCUs
(Z80, Z180, eZ80 in Z80 mode, SM83, Rabbit 2000/3000, Rabbit 3000A), Toshiba TLCS-90, Zilog eZ80 in
Z80 mode, ASCII R800, STMicroelectronics STM8 , Padauk PDK14 and PDK15. It can be retargeted for other
microprocessors, support for Padauk PDK13 and MOS6502 is under development, whereas Microchip PIC is
currently unmaintained. The entire source code for the compiler is distributed under GPL. SDCC uses a modified
version of ASXXXX & ASLINK, free open source retargetable assembler & linker. SDCC has extensive language
extensions suitable for utilizing various microcontrollers and underlying hardware effectively.
You might also want to have a look at the wiki https://sourceforge.net/p/sdcc/wiki/.

In addition to the MCU specific optimizations SDCC also does a host of standard optimizations like:

• global sub expression elimination,

• loop optimizations (loop invariant, strength reduction of induction variables and loop reversing),

• constant folding & propagation,

• copy propagation,

• dead code elimination

• jump tables for switch statements.

For the back-end SDCC uses a global register allocation scheme which should be well suited for other 8 bit MCUs.

The peep hole optimizer uses a rule based substitution mechanism which is MCU independent.

Supported data-types are:

7

https://sourceforge.net/p/sdcc/wiki/

1.2. SDCC SUITE LICENSES CHAPTER 1. INTRODUCTION

type width default signed range unsigned range
_Bool / bool 8 bits, 1 byte unsigned - 0, 1

char 8 bits, 1 byte unsigned -128, +127 0, +255
short 16 bits, 2 bytes signed -32.768, +32.767 0, +65.535
int 16 bits, 2 bytes signed -32.768, +32.767 0, +65.535

long 32 bits, 4 bytes signed -2.147.483.648, +2.147.483.647 0, +4.294.967.295
long long1 64 bits, 8 bytes signed
_BitInt2 8 to 64 bits, 1 to 8 bytes

float 4 bytes similar to IEEE 754 signed 1.175494351E-38,
3.402823466E+38

pointer 1, 2, 3 or 4 bytes generic
__bit3 1 bit unsigned - 0, 1

The compiler also allows inline assembler code to be embedded anywhere in a function. In addition, routines
developed in assembly can also be called.

SDCC also provides an option (--cyclomatic) to report the relative complexity of a function. These func-
tions can then be further optimized, or hand coded in assembly if needed.

SDCC also comes with a companion source level debugger SDCDB. The debugger currently uses ucSim, a
free open source simulator for 8051 and other micro-controllers.

The latest SDCC version can be downloaded from http://sdcc.sourceforge.net/snap.php.
Please note: the compiler will probably always be some steps ahead of this documentation4.

1.2 SDCC Suite Licenses
SDCC suite is a collection of several components derived from different sources with different licenses:

• executables:

– sdcc compiler:
sdcc compiler is licensed under the GPLv2 (GPLv3 might apply depending on the libraries used when
building).
The code or object files generated by SDCC suite are not licensed, so they can be used in FLOSS or
proprietary (closed source) applications.

– sdcpp preprocessor:
derived from GCC cpp preprocessor http://gcc.gnu.org/; GPLv3 license

– sdas assemblers and sdld linker:
derived from ASXXXX https://shop-pdp.net/ashtml/; GPLv3 license

– SDCC run-time libraries:
The great majority of SDCC run-time libraries are licensed under the GPLv2+LE which allows linking
of SDCC run-time libraries with proprietary (closed source) applications.
A possible exception are pic device libraries and header files which are generated from Microchip
header (.inc) and linker script (.lkr) files. Microchip requires that "The header files should state that
they are only to be used with authentic Microchip devices" which makes them incompatible with the
GPL, if Microchip has any copyright in them (which might depend on local copyright laws). Pic device
libraries and header files are located at non-free/lib and non-free/include directories respectively. SDCC
should be run with the --use-non-free command line option in order to include non-free header files and
libraries.

– sdbinutils utilities (sdar, sdranlib, sdnm, sdobjcopy):
derived from GNU Binutils http://www.gnu.org/software/binutils/; GPLv3 license

1Incomplete support in the pic14 and pic16 backends.
2Incomplete support in the hc08, s08, mod6502, pic14 and pic16 backends.
3Only supported in the mcs51, ds390, ds400 backends.
4Obviously this has pros and cons

8

http://sdcc.sourceforge.net/snap.php
http://gcc.gnu.org/
https://shop-pdp.net/ashtml/
http://www.gnu.org/software/binutils/

1.3. DOCUMENTATION CHAPTER 1. INTRODUCTION

– ucsim simulators:
GPLv2 license

– sdcdb debugger:
GPLv2 license

– gcc-test regression tests:
derived from gcc-testsuite; no license explicitely specified, but since it is a part of GCC is probably
GPLv3 licensed

– packihx:
public domain

– makebin:
zlib/libpng License

– pic libraries in device/non-free:
Microchip Technology Inc. claims to have copyrights on this, and their term are non-free. However,
a more common opinion is that Microchip Technology Inc. is just claiming a copyright on uncopy-
rightable facts.

• libraries:

– dbuf library:
zlib/libpng License

– Boost C++ libraries:
http://www.boost.org/; Boost Software License 1.0 (BSL-1.0)

Links to licenses:

• GPLv2 license: http://www.gnu.org/licenses/old-licenses/gpl-2.0.html

• LGPLv2.1 license: http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html

• GPLv3 license: http://www.gnu.org/licenses/gpl.html

• zlib/libpng License: http://www.opensource.org/licenses/Zlib

• Boost Software License 1.0 (BSL-1.0): http://www.opensource.org/licenses/BSL-1.0

1.3 Documentation
This documentation is maintained using a free open source word processor (LYX) http://www.lyx.org/.

1.4 Typographic conventions
Throughout this manual, we will use the following convention. Commands you have to type in are printed in "sans
serif". Code samples are printed in typewriter font. Interesting items and new terms are printed in italic.

1.5 Compatibility with previous versions
Newer versions have usually numerous bug fixes compared with the previous version. But we also sometimes
introduce some incompatibilities with older versions. Not just for the fun of it, but to make the compiler more
stable, efficient and standard compliant (see section 3.1 for Standard-Compliance). This is a list of such changes .

• short is now equivalent to int (16 bits), it used to be equivalent to char (8 bits) which is not ANSI compliant.
To maintain compatibility, old programs could be compiled using the --short-is-8bits command line option
(option removed after the 3.6.0 release).

• the default directory for gcc-builds where include, library and documentation files are stored is now in
/usr/local/share.

9

http://www.boost.org/
http://www.gnu.org/licenses/old-licenses/gpl-2.0.html
http://www.gnu.org/licenses/old-licenses/lgpl-2.1.html
http://www.gnu.org/licenses/gpl.html
http://www.opensource.org/licenses/Zlib
http://www.opensource.org/licenses/BSL-1.0
http://www.lyx.org/

1.5. COMPATIBILITY WITH PREVIOUS VERSIONS CHAPTER 1. INTRODUCTION

• char type parameters to vararg functions are casted to int unless explicitly casted and neither of the --std-c89,
--std-c99, --std-c11 or --std-c23 command line options is used, e.g.:
char a=3;
printf ("%d %c\n", a, (char)a);
will push a as an int and as a char resp if none of the above command line options are not defined,
will push a as two ints if none of the above command line option is defined.

• pointer type parameters to vararg functions are casted to generic pointers on Harvard architectures (e.g.
mcs51, ds390) unless explicitly casted and neither of the --std-c89, --std-c99, --std-c11 or --std-c23 com-
mand line options is used.

• option --regextend has been removed.

• option --noregparms has been removed.

• option --stack-after-data has been removed.

• __bit and __sbit types now consistently behave like the C99 _Bool type with respect to type conversion. The
most common incompatibility resulting from this change is related to bit toggling idioms, e.g.:
__bit b;
b = ~b; /* equivalent to b=1 instead of toggling b */
b = !b; /* toggles b */
In previous versions, both forms would have toggled the bit.

• in older versions, the preprocessor was always called with --std-c99 regardless of the --std-xxx setting. This
is no longer true, and can cause compilation failures on code built with --std-c89 but using c99 preprocessor
features, such as one-line (//) comments

• in versions older than 2.8.4 the pic16 *printf() and printf_tiny() library functions supported undocumented
and not standard compliant ’b’ binary format specifier ("%b", "%hb" and "%lb"). The ’b’ specifier
is now disabled by default. It can be enabled by defining BINARY_SPECIFIER macro in files de-
vice/lib/pic16/libc/stdio/vfprintf.c and device/lib/pic16/libc/stdio/printf_tiny.c and recompiling the library.

• in versions older then 2.8.5 the unnamed bit-field structure members participated in initialization, which is
not conforming with ISO/IEC 9899:1999 standard (see section Section 6.7.8 Initialization, clause 9)

Old behaviour, before version 2.8.5:
struct {
int a : 2;
char : 2;
int b : 2;
} s = {1, 2, 3};
/* s.a = 1, s.b = 3 */

New behaviour:
struct {
int a : 2;
char : 2;
int b : 2;
} s = {1, 2};
/* s.a = 1, s.b = 2 */

• In 2.9.0 libraries included in SDCC packages, are in ar format. See section 3.2.5.

• In 3.0.0 targets for xa51 and avr are disabled by default.

• In 3.0.0 sdldgb and sdldz80 don’t support generation of Game Boy binary image format. The makebin utility
can be used to convert Intel Hex format to Game Boy binary image format.

• In 3.0.0 sdldgb and sdldz80 don’t support generation of rrgb (Game Boy simulator) map file and no$gmb
symbol file formats. The as2gbmap utility can be used to convert sdld map format to rrgb and no$gmb file
formats.

10

1.5. COMPATIBILITY WITH PREVIOUS VERSIONS CHAPTER 1. INTRODUCTION

• In 3.1.0 asranlib utility was renamed to sdranlib.

• In 3.1.0 pic14 target, structured access to SFR via <sfrname>_bits.<bitname> is deprecated and
replaced by <sfrname>bits.<bitname>. It will be obsoleted (removed) in one of next SDCC releases.
See section 4.6.8.3.

• sdar archive managing utility and sdnm utilities were introduced in version 3.2.0. sdar, sdranlib and sdnm
are derived from GNU Binutils package.

• In 3.2.0 the sdcclib utility is deprecated. Sdar utility should be used to create SDCC object file archives.
Sdcclib utility will become obsolete in one of next SDCC releases and will be removed from SDCC packages.

• In 3.2.0 special SDCC keywords which are not preceded by a double underscore are obsoleted (removed).
See section 3.1 Standard-Compliance.

• In 3.2.0 compiler macro definitions not starting with double underscore characters are deprecated if
--std-cXX command line option is defined. They have been obsoleted (removed) after the 3.4.0 release
(except for the macro SDCC, which has been removed after the 3.6.0 release (and brought back for mcs51
for the 3.7.0 release)).

• In 3.2.0 new compiler macros for processor definition were introduced for pic14 and pic16 targets:
-D__SDCC_PIC16XXXX and -D__SDCC_PIC18FXXX respectively. The pic16 macro definition
-D__18fXXX is deprecated. It was obsoleted (removed) after the 3.4.0 release.

• In 3.2.0 pragma config for pic16 target was introduced. See section 4.7.6

• In 3.2.0 new inline assembler format __asm__ (”inline_assembler_code”); as an addition to
__asm ... __endasem; format introduced. See section 3.11

• sdobjcopy utility was introduced in version 3.3.0. It is derived from GNU Binutils package.

• Before 3.4.0 release, intrinsic named address spaces were called ”storage classes” in this manual.

• In 3.6.0, the default for char changed from signed to unsigned.

• In 3.7.0, the prototype for putchar() changed from void putchar(char) to int putchar(int).

• In 3.7.0 mcs51 and ds390 got a full _Bool/bool type, separate from __bit.

• In 3.7.0, the option --nojtbound and the corresponding pragma have been deprecated.

• In 3.7.0, the prototype for getchar() changed from char getchar(void) to int getchar(void).

• In 3.8.6, the deprecated sdcclib was removed.

• In 4.0.3, _itoa, _uitoa, _ltoa, _ultoa were renamed to __itoa, __uitoa, __ltoa, __ultoa.

• In 4.1.1, typeof.h has been removed.

• In 4.1.3, support for --oldralloc has been removed for the z80-related backends.

• In 4.1.10, the default calling convention switched from __sdccall(0) to __sdccall(1) for stm8 and gbz80.

• In 4.1.10, support for --profile has been removed for gbz80.

• In 4.1.11, the minimum Z80N Core version for the z80n port has been raised from 1.0 to 2.0.

• In 4.1.12, the default calling convention switched from __sdccall(0) to __sdccall(1) for z80, z180 and z80n.

• In 4.1.12, support for --profile has been removed for z80, z180, z80n.

• In 4.1.13, support for --profile has been removed.

• In 4.1.14, the gbz80 port was renamed to sm83.

• In 4.2.3, support for non-parenthesized arguments to __using and __interrupt was dropped.

11

1.6. SYSTEM REQUIREMENTS CHAPTER 1. INTRODUCTION

• In 4.2.3, support for non-parenthesized arguments to __at that are not constants was dropped.

• In 4.2.4, the placement of __at in declarations was restricted.

• In 4.2.6, bool is chosen as the underlying integer type for enumerations with just two values.

• In 4.2.9, support for--pedantic-parse-number and #pragma pedantic_parse_numer was dropped.

• In 4.2.9, support for #pragma sdcc_hash was dropped, necessitating a wrapper macro for literal ”#” characters
in macro bodies.

• In 4.2.9, support for arguments to -MMD was dropped. The output file can be specified via -MF instead.

• In 4.2.10, _sdcc_external_startup was renamed to __sdcc_external_startup and support for it was added to
further ports.

• In 4.2.13, for the sm83 port, __sfr addresses need to be specified using the full 16-bit address.

• In 4.2.14, byte order in output from the %p specifier of printf()-family functions was corrected for big-endian
platforms (stm8, hc08, s08, mos6502) to match uintptr_t.

• In 4.3.1, __builtin_rlc, __builtin_rrc and __builtin_swap were replaced by __builtin_rot.

• In 4.3.6, support for --parms-in-bank1 was removed from the mcs51 port.

• In 4.4.1, the address width in .rel files was increased from 24 bits to 32 bits for the z80 (and related) ports.

1.6 System Requirements
What do you need before you start installation of SDCC? A computer, and a desire to compute. The preferred
method of installation is to compile SDCC from source using GNU GCC and make. For Windows some pre-
compiled binary distributions are available for your convenience. You should have some experience with command
line tools and compiler use.

1.7 Other Resources
The SDCC home page at http://sdcc.sourceforge.net/ is a great place to find distribution sets. You can
also find links to the user mailing lists that offer help or discuss SDCC with other SDCC users. Web links to other
SDCC related sites can also be found here. This document can be found in the doc directory of the source package.
The latest snapshot build version of this document in pdf format is available at http://sdcc.sourceforge.
net/doc/sdccman.pdf. Some of the other tools (simulator and assembler) included with SDCC contain their
own documentation and can be found in the source distribution. If you want the latest unreleased software, the
complete source package is available directly from Subversion on http://sourceforge.net/p/sdcc/
code/8805/tree/trunk/sdcc/.

12

http://sdcc.sourceforge.net/
http://sdcc.sourceforge.net/doc/sdccman.pdf
http://sdcc.sourceforge.net/doc/sdccman.pdf
http://sourceforge.net/p/sdcc/code/8805/tree/trunk/sdcc/
http://sourceforge.net/p/sdcc/code/8805/tree/trunk/sdcc/

Chapter 2

Installing SDCC

For most users it is sufficient to skip to either section 2.4.1 (Unix) or section 2.4.7 (Windows). More detailed
instructions follow below.

2.1 Configure Options
The install paths, search paths and other options are defined when running ’configure’. The defaults can be over-
ridden by:

--prefix see table below

--exec_prefix see table below

--bindir see table below

--datadir see table below

--datarootdir see table below

docdir environment variable, see table below

include_dir_suffix environment variable, see table below

non_free_include_dir_suffix environment variable, see table below

lib_dir_suffix environment variable, see table below

non_free_lib_dir_suffix environment variable, see table below

sdccconf_h_dir_separator environment variable, either / or \\ makes sense here. This character will only be used
in sdccconf.h; don’t forget it’s a C-header, therefore a double-backslash is needed there.

--disable-mcs51-port Excludes the Intel mcs51 port

--disable-z80-port Excludes the z80 port

--disable-z180-port Excludes the z180 port

--disable-ez80_z80-port Excludes the e80_z80 port

--disable-z80n-port Excludes the z80n port

--disable-r800-port Excludes the r800 port

--disable-r2k-port Excludes the r2k port

--disable-r2ka-port Excludes the r2ka port

13

2.1. CONFIGURE OPTIONS CHAPTER 2. INSTALLING SDCC

--disable-r3ka-port Excludes the r3ka port

--disable-sm83-port Excludes the SM83 port

--disable-tlcs90-port Excludes the TLCS-90 port

--disable-ds390-port Excludes the DS390 port

--disable-ds400-port Excludes the DS400 port

--disable-hc08-port Excludes the HC08 port

--disable-s08-port Excludes the S08 port

--disable-stm8-port Excludes the STM8 port

--disable-pdk13-port Excludes the PDK13 port

--disable-pdk14-port Excludes the PDK14 port

--disable-pdk15-port Excludes the PDK15 port

--disable-pic14-port Excludes the PIC14 port

--disable-pic16-port Excludes the PIC16 port

--disable-mos6502-port Excludes the MOS6502

--disable-mos65c02-port Excludes the MOS65C02

--disable-ucsim Disables configuring and building of ucsim

--disable-device-lib Disables automatically building device libraries

--disable-packihx Disables building packihx

--enable-doc Build pdf, html and txt files from the lyx sources

--enable-libgc Use the Bohem memory allocator. Lower runtime footprint.

--without-ccache Do not use ccache even if available

Furthermore the environment variables CC, CFLAGS, ... the tools and their arguments can be influenced. Please
see ‘configure --help’ and the man/info pages of ‘configure’ for details.

The names of the standard libraries STD_LIB, STD_INT_LIB, STD_LONG_LIB, STD_FP_LIB,
STD_DS390_LIB, STD_XA51_LIB and the environment variables SDCC_DIR_NAME, SDCC_INCLUDE_NAME,
SDCC_LIB_NAME are defined by ‘configure’ too. At the moment it’s not possible to change the default settings
(it was simply never required).

These configure options are compiled into the binaries, and can only be changed by rerunning ’configure’
and recompiling SDCC. The configure options are written in italics to distinguish them from run time environment
variables (see section search paths).

The settings for ”Win32 builds” are used by the SDCC team to build the official Win32 binaries. The
SDCC team uses Mingw32 to build the official Windows binaries, because it’s

1. open source,

2. a gcc compiler and last but not least

3. the binaries can be built by cross compiling on SDCC Distributed Compile Farm.

14

2.1. CONFIGURE OPTIONS CHAPTER 2. INSTALLING SDCC

See the examples, how to pass the Win32 settings to ’configure’. The other Win32 builds using VC or whatever
don’t use ’configure’, but a header file sdcc_vc.h.in is the same as sdccconf.h built by ’configure’ for Win32.

These defaults are:

Variable default Win32 builds
PREFIX /usr/local \sdcc

EXEC_PREFIX $PREFIX $PREFIX
BINDIR $EXEC_PREFIX/bin $EXEC_PREFIX\bin

DATADIR $DATAROOTDIR $DATAROOTDIR
DATAROOTDIR $PREFIX/share $PREFIX

DOCDIR $DATAROOTDIR/sdcc/doc $DATAROOTDIR\doc
INCLUDE_DIR_SUFFIX sdcc/include include

NON_FREE_INCLUDE_DIR_SUFFIX sdcc/non-free/include non-free/include
LIB_DIR_SUFFIX sdcc/lib lib

NON_FREE_LIB_DIR_SUFFIX sdcc/non-free/lib non-free/lib

’configure’ also computes relative paths. This is needed for full relocatability of a binary package and to complete
search paths (see section search paths below):

Variable (computed) default Win32 builds
BIN2DATA_DIR ../share ..

PREFIX2BIN_DIR bin bin
PREFIX2DATA_DIR share/sdcc

Examples:

./configure

./configure --prefix=”/usr/bin” --datarootdir=”/usr/share”

./configure --disable-avr-port --disable-xa51-port

To cross compile on linux for Mingw32 (see also ’sdcc/support/scripts/sdcc_mingw32’):

./configure \
CC=”i586-mingw32msvc-gcc” CXX=”i586-mingw32msvc-g++” \
RANLIB=”i586-mingw32msvc-ranlib” \
STRIP=”i586-mingw32msvc-strip” \
--prefix=”/sdcc” \
--datarootdir=”/sdcc” \
docdir=”\${datarootdir}/doc” \
include_dir_suffix=”include” \
non_free_include_dir_suffix=”non-free/include” \
lib_dir_suffix=”lib” \
non_free_lib_dir_suffix=”non-free/lib” \
sdccconf_h_dir_separator=”\\\\” \
--disable-device-lib \
--host=i586-mingw32msvc \
--build=unknown-unknown-linux-gnu

To ”cross”compile on Cygwin for Mingw32 (see also sdcc/support/scripts/sdcc_cygwin_mingw32):

./configure -C \
--prefix=”/sdcc” \
--datarootdir=”/sdcc” \
docdir=”\${datarootdir}/doc” \
include_dir_suffix=”include” \

15

2.2. INSTALL PATHS CHAPTER 2. INSTALLING SDCC

non_free_include_dir_suffix=”non-free/include” \
lib_dir_suffix=”lib” \
non_free_lib_dir_suffix=”non-free/lib” \
sdccconf_h_dir_separator=”\\\\” \
CC=”gcc -mno-cygwin” \
CXX=”g++ -mno-cygwin”

’configure’ is quite slow on Cygwin (at least on windows before Win2000/XP). The option ’--C’ turns on caching,
which gives a little bit extra speed. However if options are changed, it can be necessary to delete the config.cache
file.

2.2 Install paths

Description Path Default Win32 builds
Binary files* $EXEC_PREFIX /usr/local/bin \sdcc\bin
Include files $DATADIR/

$INCLUDE_DIR_SUFFIX
/usr/local/share/
sdcc/include

\sdcc\include

Non-free include files $DATADIR/non-free/
$INCLUDE_DIR_SUFFIX

/usr/local/share/
sdcc/non-free/include

\sdcc\non-free\include

Library file** $DATADIR/
$LIB_DIR_SUFFIX

/usr/local/share/
sdcc/lib

\sdcc\lib

Library file** $DATADIR/non-free/
$LIB_DIR_SUFFIX

/usr/local/share/
sdcc/non-free/lib

\sdcc\non-free\lib

Documentation $DOCDIR /usr/local/share/
sdcc/doc

\sdcc\doc

*compiler, preprocessor, assembler, and linker
**the model is auto-appended by the compiler, e.g. small, large, z80, ds390 etc

The install paths can still be changed during ‘make install’ with e.g.:

make install prefix=$(HOME)/local/sdcc

Of course this doesn’t change the search paths compiled into the binaries.

Moreover the install path can be changed by defining DESTDIR:

make install DESTDIR=$(HOME)/sdcc.rpm/

Please note that DESTDIR must have a trailing slash!

2.3 Search Paths
Some search paths or parts of them are determined by configure variables (in italics, see section above). Further
search paths are determined by environment variables during runtime.
The paths searched when running the compiler are as follows (the first catch wins):

1. Binary files (preprocessor, assembler and linker)

Search path default Win32 builds
$SDCC_HOME/$PPREFIX2BIN_DIR $SDCC_HOME/bin $SDCC_HOME\bin

Path of argv[0] (if available) Path of argv[0] Path of argv[0]
$PATH $PATH $PATH

2. Include files

16

2.3. SEARCH PATHS CHAPTER 2. INSTALLING SDCC

Search path default Win32 builds
1 --I dir --I dir --I dir
2 $SDCC_INCLUDE $SDCC_INCLUDE $SDCC_INCLUDE
3 $SDCC_HOME/

$PREFIX2DATA_DIR/
$INCLUDE_DIR_SUFFIX

$SDCC_HOME/
share/sdcc/include

$SDCC_HOME\include

4 path(argv[0])/
$BIN2DATADIR/
$INCLUDE_DIR_SUFFIX

path(argv[0])/../
sdcc/include

path(argv[0])\..\include

5 $DATADIR/
$INCLUDE_DIR_SUFFIX

/usr/local/share/
sdcc/include

(not on Win32)

6 $SDCC_HOME/
$PREFIX2DATA_DIR/
non-free/
$INCLUDE_DIR_SUFFIX

$SDCC_HOME/share/
sdcc/non-free/include

$SDCC_HOME\non-free\include

7 path(argv[0])/
$BIN2DATADIR/
non-free/
$INCLUDE_DIR_SUFFIX

path(argv[0])/../
sdcc/non-free/include

path(argv[0])\..\non-free\include

8 $DATADIR/
non-free/
$INCLUDE_DIR_SUFFIX

/usr/local/share/
sdcc/non-free/include

(not on Win32)

The option --nostdinc disables all search paths except #1 and #2.

3. Library files

With the exception of ”--L dir” the model is auto-appended by the compiler (e.g. small, large, z80, ds390 etc.).

17

2.4. BUILDING SDCC CHAPTER 2. INSTALLING SDCC

Search path default Win32 builds
1 --L dir --L dir --L dir
2 $SDCC_LIB/<model> $SDCC_LIB/<model> $SDCC_LIB/<model>
3 $SDCC_LIB $SDCC_LIB $SDCC_LIB
4 $SDCC_HOME/

$PREFIX2DATA_DIR/
$LIB_DIR_SUFFIX/
<model>

$SDCC_HOME/
share/sdcc/lib/<model>

$SDCC_HOME\
lib\<model>

5 path(argv[0])/
$BIN2DATADIR/
$LIB_DIR_SUFFIX/
<model>

path(argv[0])/../sdcc/
lib/<model>

path(argv[0])\
..\lib\
<model>

6 $DATADIR/non-free/
$LIB_DIR_SUFFIX/
<model>

/usr/local/share/sdcc/
lib/<model>

(not on Win32)

7 $SDCC_HOME/
$PREFIX2DATA_DIR/
non-free/
$LIB_DIR_SUFFIX/
<model>

$SDCC_HOME/share/sdcc/
non-free/lib/<model>

$SDCC_HOME\
lib\non-free\<model>

8 path(argv[0])/
$BIN2DATADIR/
non-free/
$LIB_DIR_SUFFIX/
<model>

path(argv[0])/../sdcc/
non-free/lib/<model>

path(argv[0])\..\
lib\non-free\<model>

9 $DATADIR/non-free/
$LIB_DIR_SUFFIX/
<model>

/usr/local/share/sdcc/
non-free/lib/
<model>

(not on Win32)

The option --nostdlib disables all search paths except #1 and #2.

2.4 Building SDCC
SDCC can be built for various host platforms using the instructions provided below. Note that the PIC14 and PIC16
library folders in the source distribution contain Autotools-generated files. These are included for convenience and
to avoid introducing Autotools as an additional dependency. They have to be regenerated in case of a version
mismatch. Alternatively, the PIC backends can be disabled.

2.4.1 Building SDCC on Linux
1. Download the source package either from the SDCC Subversion repository or from snapshot builds, it will

be named something like sdcc-src-yyyymmdd-rrrr.tar.bz2 http://sdcc.sourceforge.net/snap.
php.

2. Bring up a command line terminal, such as xterm.

3. Unpack the file using a command like: "tar -xvjf sdcc-src-yyyymmdd-rrrr.tar.bz2”, this will create a
sub-directory called sdcc with all of the sources.

4. Change directory into the main SDCC directory, for example type: "cd sdcc".

5. Type "./configure". This configures the package for compilation on your system. When the treedec library
is available, it should be found and used automatically (improving the compilation time / code quality trade-
off). As of SDCC 3.7.0, the current develop branch from https://github.com/freetdi/tdlib is a suitable version
of treedec.

6. Type "make". All of the source packages will compile, this can take a while.

18

http://sdcc.sourceforge.net/snap.php
http://sdcc.sourceforge.net/snap.php

2.4. BUILDING SDCC CHAPTER 2. INSTALLING SDCC

7. Type "make install" as root. This copies the binary executables, the include files, the libraries and the
documentation to the install directories. Proceed with section 2.7.

2.4.2 Building SDCC on Mac OS X
Follow the instruction for Linux.

On Mac OS X 10.2.x it was reported, that the default gcc (version 3.1 20020420 (prerelease)) fails to com-
pile SDCC. Fortunately there’s also gcc 2.9.x installed, which works fine. This compiler can be selected by running
’configure’ with:

./configure CC=gcc2 CXX=g++2

Universal (ppc and i386) binaries can be produced on Mac OS X 10.4.x with Xcode. Run ’configure’ with:

./configure \
LDFLAGS="-Wl,-syslibroot,/Developer/SDKs/MacOSX10.4u.sdk -arch i386 -arch ppc" \
CXXFLAGS = "-O2 -isysroot /Developer/SDKs/MacOSX10.4u.sdk -arch i386 -arch ppc" \
CFLAGS = "-O2 -isysroot /Developer/SDKs/MacOSX10.4u.sdk -arch i386 -arch ppc"

2.4.3 Cross compiling SDCC on Linux for Windows
With the MinGW gcc cross compiler SDCC can be cross-compiled for Win32. See section ’Configure Op-
tions’. SDCC requires boost, but the header-only parts should be sufficient: Get a current boost tarball from
www.boost.org, unpack it, and choose suitable configure options so the headers are found by the C++ compiler.

2.4.4 Building SDCC using Cygwin and Mingw32
For building and installing a Cygwin executable follow the instructions for Linux.

On Cygwin a ”native” Win32-binary can be built, which will not need the Cygwin-DLL. For the necessary
’configure’ options see section ’configure options’ or the script ’sdcc/support/scripts/sdcc_cygwin_mingw32’.

In order to install Cygwin on Windows download setup.exe from www.cygwin.com http://www.cygwin.
com/. Run it, set the ”default text file type” to ”unix” and download/install at least the following packages. Some
packages are selected by default, others will be automatically selected because of dependencies with the manually
selected packages. Never deselect these packages!

• flex

• bison

• gcc ; version 3.x is fine, no need to use the old 2.9x

• binutils ; selected with gcc

• make

• libboost-dev

• rxvt ; a nice console, which makes life much easier under windoze (see below)

• man ; not really needed for building SDCC, but you’ll miss it sooner or later

• less ; not really needed for building SDCC, but you’ll miss it sooner or later

• svn ; only if you use Subversion access

If you want to develop something you’ll need:

• python ; for the regression tests

19

http://www.cygwin.com/
http://www.cygwin.com/

2.4. BUILDING SDCC CHAPTER 2. INSTALLING SDCC

• gdb ; the gnu debugger, together with the nice GUI ”insight”

• openssh ; to access the CF or commit changes

• autoconf and autoconf-devel ; if you want to fight with ’configure’, don’t use autoconf-stable!

rxvt is a nice console with history. Replace in your cygwin.bat the line

bash --login -i

with (one line):

rxvt -sl 1000 -fn "Lucida Console-12" -sr -cr red
-bg black -fg white -geometry 100x65 -e bash --login

Text selected with the mouse is automatically copied to the clipboard, pasting works with shift-insert.

The other good tip is to make sure you have no //c/-style paths anywhere, use /cygdrive/c/ instead. Using //
invokes a network lookup which is very slow. If you think ”cygdrive” is too long, you can change it with e.g.

mount -s -u -c /mnt

SDCC sources use the unix line ending LF. Life is much easier, if you store the source tree on a drive which is
mounted in binary mode. And use an editor which can handle LF-only line endings. Make sure not to commit files
with windows line endings. The tabulator spacing used in the project is 8. Although a tabulator spacing of 8 is a
sensible choice for programmers (it’s a power of 2 and allows to display 8/16 bit signed variables without loosing
columns) the plan is to move towards using only spaces in the source.

2.4.5 Building SDCC Using Microsoft Visual C++ 2010 (MSVC)
Download the source package either from the SDCC Subversion repository or from the snapshot builds
http://sdcc.sourceforge.net/snap.php, it will be named something like sdcc-src-yyyymmdd-
rrrr.tar.bz2. SDCC is distributed with all the project, solution and other files you need to build it using Visual C++
2010 (except for ucSim). The solution name is ’sdcc.sln’. Please note that as it is now, all the executables are
created in a folder called sdcc\bin_vc. Once built you need to copy the executables from sdcc\bin_vc to sdcc\bin
before running SDCC.

Apart from the SDCC sources you also need to have the BOOST libraries installed for MSVC. Get it here
http://www.boost.org/

In order to build SDCC with MSVC you need win32 executables of bison.exe, flex.exe, and gawk.exe. One
good place to get them is here http://unxutils.sourceforge.net

If UnxUtils didn’t work well, msys (http://www.mingw.org/wiki/msys) or msys2(https:
//msys2.github.io) can be an alternative.

Download the file UnxUtils.zip. Now you have to install the utilities and setup MSVC so it can locate the
required programs. Here there are two alternatives (choose one!):

1. The easy way:

a) Extract UnxUtils.zip to your C:\ hard disk PRESERVING the original paths, otherwise bison won’t work.
(If you are using WinZip make certain that ’Use folder names’ is selected)

b) Add ’C:\user\local\wbin’ to VC++ Directories / Executable Directories.

(As a side effect, you get a bunch of Unix utilities that could be useful, such as diff and patch.)

20

http://sdcc.sourceforge.net/snap.php
http://www.boost.org/
http://unxutils.sourceforge.net
http://www.mingw.org/wiki/msys
https://msys2.github.io
https://msys2.github.io

2.4. BUILDING SDCC CHAPTER 2. INSTALLING SDCC

2. A more compact way:

This one avoids extracting a bunch of files you may not use, but requires some extra work:

a) Create a directory were to put the tools needed, or use a directory already present. Say for exam-
ple ’C:\util’.

b) Extract ’bison.exe’, ’bison.hairy’, ’bison.simple’, ’flex.exe’, and gawk.exe to such directory WITHOUT
preserving the original paths. (If you are using WinZip make certain that ’Use folder names’ is not selected)

c) Rename bison.exe to ’_bison.exe’.

d) Create a batch file ’bison.bat’ in ’C:\util\’ and add these lines:
set BISON_SIMPLE=C:\util\bison.simple
set BISON_HAIRY=C:\util\bison.hairy
_bison %1 %2 %3 %4 %5 %6 %7 %8 %9

Steps ’c’ and ’d’ are needed because bison requires by default that the files ’bison.simple’ and ’bi-
son.hairy’ reside in some weird Unix directory, ’/usr/local/share/’ I think. So it is necessary to tell bison
where those files are located if they are not in such directory. That is the function of the environment
variables BISON_SIMPLE and BISON_HAIRY.

e) Add ’C:\util’ to VC++ Directories / Executable Directories. Note that you can use any other path
instead of ’C:\util’, even the path where the Visual C++ tools are, probably: ’C:\Program Files\Microsoft
Visual Studio\Common\Tools’. So you don’t have to execute step ’e’ :)

That is it. Open ’sdcc.sln’ in Visual Studio, click ’build all’, when it finishes copy the executables from sdcc\bin_vc
to sdcc\bin, and you can compile using SDCC.

2.4.6 Windows Install Using a ZIP Package
1. Download the binary zip package from http://sdcc.sf.net/snap.php and unpack it using your

favorite unpacking tool (gunzip, WinZip, etc). This should unpack to a group of sub-directories. An example
directory structure after unpacking the mingw32 package is: C:\sdcc\bin for the executables, C:\sdcc\include
and C:\sdcc\lib for the include and libraries.

2. Adjust your environment variable PATH to include the location of the bin directory or start sdcc using the
full path.

2.4.7 Windows Install Using the Setup Program
Download the setup program sdcc-x.y.z-setup.exe for an official release from
http://sourceforge.net/projects/sdcc/files/ or a setup program for one of the snapshots sdcc-
yyyymmdd-xxxx-setup.exe from http://sdcc.sourceforge.net/snap.php and execute it. A windows
typical installer will guide you through the installation process.

2.4.8 VPATH feature
SDCC supports the VPATH feature provided by configure and make. It allows to separate the source and build
trees. Here’s an example:

cd ~ # cd $HOME
tar -xjf sdcc-src-yyyymmdd-rrrr.tar.bz2 # extract source to directory

sdcc
mkdir sdcc.build # put output in sdcc.build
cd sdcc.build
../sdcc/configure # configure is doing all the

magic!

21

http://sdcc.sf.net/snap.php
http://sourceforge.net/projects/sdcc/files/
http://sdcc.sourceforge.net/snap.php

2.5. BUILDING THE DOCUMENTATION CHAPTER 2. INSTALLING SDCC

make
That’s it! configure will create the directory tree will all the necessary Makefiles in ~/sdcc.build. It automagically
computes the variables srcdir, top_srcdir and top_buildir for each directory. After running make the generated files
will be in ~/sdcc.build, while the source files stay in ~/sdcc.
This is not only usefull for building different binaries, e.g. when cross compiling. It also gives you a much better
overview in the source tree when all the generated files are not scattered between the source files. And the best
thing is: if you want to change a file you can leave the original file untouched in the source directory. Simply copy
it to the build directory, edit it, enter ‘make clean’, ‘rm Makefile.dep’ and ‘make’. make will do the rest for you!

2.5 Building the Documentation
Add --enable-doc to the configure arguments to build the documentation together with all the other stuff. You will
need several tools (LYX, LATEX, LATEX2HTML, pdflatex, dvipdf, dvips and makeindex) to get the job done. Another
possibility is to change to the doc directory and to type ”make” there. You’re invited to make changes and additions
to this manual (sdcc/doc/sdccman.lyx). Using LYX http://www.lyx.org as editor is straightforward. Prebuilt
documentation is available from http://sdcc.sourceforge.net/snap.php.

2.6 Reading the Documentation
Currently reading the document in PDF format is recommended, as for unknown reason the hyperlinks are working
there whereas in the HTML version they are not1.
You’ll find the PDF version at http://sdcc.sourceforge.net/doc/sdccman.pdf.
This documentation is in some aspects different from a commercial documentation:

• It tries to document SDCC for several processor architectures in one document (commercially these probably
would be separate documents/products). This document currently matches SDCC for mcs51 and DS390 best
and does give too few information about f.e. Z80, PIC14, PIC16 and HC08.

• There are many references pointing away from this documentation. Don’t let this distract you. If there
f.e. was a reference like http://www.opencores.org together with a statement ”some proces-
sors which are targeted by SDCC can be implemented in a f ield programmable gate array” or http:
//sourceforge.net/projects/fpgac/ ”have you ever heard of an open source compiler that com-
piles a subset of C for an FPGA?” we expect you to have a quick look there and come back. If you read this
you are on the right track.

• Some sections attribute more space to problems, restrictions and warnings than to the solution.

• The installation section and the section about the debugger is intimidating.

• There are still lots of typos and there are more different writing styles than pictures.

2.7 Testing the SDCC Compiler
The first thing you should do after installing your SDCC compiler is to see if it runs. Type "sdcc --version" at
the prompt, and the program should run and output its version like:
SDCC : mcs51/z80/z180/r2k/r2ka/r3ka/sm83/tlcs90/ez80_z80/z80n/r800/ds390/pic16/pic14/TININative/ds400/hc08/s08/stm8/pdk13/pdk14/pdk15/mos6502/mos65c02
4.4.0 #14546 (Linux)

If it doesn’t run, or gives a message about not finding sdcc program, then you need to check over your instal-
lation. Make sure that the sdcc bin directory is in your executable search path defined by the PATH environment
setting (see section 2.8 Install trouble-shooting for suggestions). Make sure that the sdcc program is in the bin
folder, if not perhaps something did not install correctly.

SDCC is commonly installed as described in section ”Install and search paths”.

Make sure the compiler works on a very simple example. Type in the following test.c program using your
favorite ASCII editor:

1If you should know why please drop us a note

22

http://www.lyx.org
http://sdcc.sourceforge.net/snap.php
http://sdcc.sourceforge.net/doc/sdccman.pdf
http://www.opencores.org
http://sourceforge.net/projects/fpgac/
http://sourceforge.net/projects/fpgac/

2.8. INSTALL TROUBLE-SHOOTING CHAPTER 2. INSTALLING SDCC

char test;

void main(void) {
test=0;

}

Compile this using the following command: "sdcc -c test.c". If all goes well, the compiler will generate a
test.asm and test.rel file. Congratulations, you’ve just compiled your first program with SDCC. We used the -c
option to tell SDCC not to link the generated code, just to keep things simple for this step.

The next step is to try it with the linker. Type in "sdcc test.c". If all goes well the compiler will link
with the libraries and produce a test.ihx output file. If this step fails (no test.ihx, and the linker generates warnings),
then the problem is most likely that SDCC cannot find the /usr/local/share/sdcc/lib directory (see section 2.8 Install
trouble-shooting for suggestions).

The final test is to ensure SDCC can use the standard header files and libraries. Edit test.c and change it to
the following:

#include <string.h>

char str1[10];

void main(void) {
strcpy(str1, "testing");

}

Compile this by typing "sdcc test.c". This should generate a test.ihx output file, and it should give no warnings
such as not finding the string.h file. If it cannot find the string.h file, then the problem is that SDCC cannot find
the /usr/local/share/sdcc/include directory (see the section 2.8 Install trouble-shooting section for suggestions). Use
option --print-search-dirs to find exactly where SDCC is looking for the include and lib files.

2.8 Install Trouble-shooting

2.8.1 If SDCC does not build correctly
A thing to try is starting from scratch by unpacking the .tgz source package again in an empty directory. Configure
it like:

./configure 2>&1 | tee configure.log

and build it like:

make 2>&1 | tee make.log

If anything goes wrong, you can review the log files to locate the problem. Or a relevant part of this can
be attached to an email that could be helpful when requesting help from the mailing list.

2.8.2 What the ”./configure” does
The ”./configure” command is a script that analyzes your system and performs some configuration to ensure the
source package compiles on your system. It will take a few minutes to run, and will compile a few tests to determine
what compiler features are installed.

2.8.3 What the ”make” does
This runs the GNU make tool, which automatically compiles all the source packages into the final installed binary
executables.

23

2.9. COMPONENTS OF SDCC CHAPTER 2. INSTALLING SDCC

2.8.4 What the ”make install” command does.
This will install the compiler, other executables libraries and include files into the appropriate directories. See
sections 2.2, 2.3 about install and search paths.
On most systems you will need super-user privileges to do this.

2.9 Components of SDCC
SDCC is not just a compiler, but a collection of tools by various developers. These include linkers, assemblers,
simulators and other components. Here is a summary of some of the components. Note that the included simulator
and assembler have separate documentation which you can find in the source package in their respective directories.
As SDCC grows to include support for other processors, other packages from various developers are included and
may have their own sets of documentation.

You might want to look at the files which are installed in <installdir>. At the time of this writing, we find
the following programs, among others, for gcc-builds:

In <installdir>/bin:

• sdcc - The compiler.

• sdcpp - The C preprocessor.

• sdas8051 - The assembler for 8051 type processors.

• sdas390 - The assembler for DS80C390 processor.

• sdasz80, sdasgb - The Z80 and GameBoy Z80 assemblers.

• sdas6808 - The 6808 assembler.

• sdasstm8 - The STM8 assembler.

• sdld -The linker for 8051 and STM8 type processors.

• sdldz80, sdldgb - The Z80 and GameBoy Z80 linkers.

• sdld6808 - The 6808 linker.

• ucsim_51, s51 - The ucSim 8051 simulator.

• ucsim_m68hc08 - The ucSim 6808 simulator.

• ucsim_stm8 - The ucSim STM8 simulator.

• ucsim_z80 - The ucSim Z80 simulator.

• sdcdb - The source debugger.

• sdar, sdranlib, sdnm, sdobjcopy - The sdcc archive managing and indexing utilites.

• packihx - A tool to pack (compress) Intel hex files.

• makebin - A tool to convert Intel Hex file to a binary and GameBoy binary image file format.

In <installdir>/share/sdcc/include

• the include files

In <installdir>/share/sdcc/non-free/include

• the non-free include files

In <installdir>/share/sdcc/lib

24

2.9. COMPONENTS OF SDCC CHAPTER 2. INSTALLING SDCC

• the src and target subdirectories with the precompiled relocatables.

In <installdir>/share/sdcc/non-free/lib

• the src and target subdirectories with the non-free precompiled relocatables.

In <installdir>/share/sdcc/doc

• the documentation

2.9.1 sdcc - The Compiler
This is the actual compiler, it in turn uses the C-preprocessor and invokes the assembler and linkage editor.

2.9.2 sdcpp - The C-Preprocessor
The preprocessor is a modified version of the GNU cpp preprocessor http://gcc.gnu.org/. The C prepro-
cessor is used to pull in #include sources, process #ifdef statements, #defines and so on.

2.9.3 sdas, sdld - The Assemblers and Linkage Editors
This is a set of retargettable assemblers and linkage editors, which was developed by Alan Baldwin. John Hartman
created the version for 8051, and I (Sandeep) have made some enhancements and bug fixes for it to work properly
with SDCC.

SDCC used an about 1998 branch of asxxxx version 2.0 which unfortunately is not compatible with the more
advanced (f.e. macros, more targets) ASxxxx Cross Assemblers nowadays available from Alan Baldwin https:
//shop-pdp.net/. In 2009 Alan made his ASxxxx Cross Assemblers version 5.0 available under the GPL
license (GPLv3 or later), so a reunion is now a work in progress. Thanks Alan!

2.9.4 ucsim_51, ucsim_z80, ucsim_stm8 etc. - The Simulators
ucsim_51 (or s51), ucsim_z80 ucsim_m68hc08 and ucsim_stm8 , as well as similarly named programs provided
with SDCC, are free open source simulators developed by Daniel Drotos. The simulators are built as part of the
build process. For more information visit Daniel’s web site at: http://mazsola.iit.uni-miskolc.hu/
~drdani/embedded/s51. It currently supports the core mcs51, the Dallas DS80C390, the Phillips XA51
family, the Z80, 6808 the STM8 and various others.

2.9.5 sdcdb - Source Level Debugger
SDCDB is the companion source level debugger. More about SDCDB in section 5.1. The current version of the
debugger uses Daniel’s Simulator S51, but can be easily changed to use other simulators.

25

http://gcc.gnu.org/
https://shop-pdp.net/
https://shop-pdp.net/
http://mazsola.iit.uni-miskolc.hu/~drdani/embedded/s51
http://mazsola.iit.uni-miskolc.hu/~drdani/embedded/s51

Chapter 3

Using SDCC

3.1 Standard-Compliance
SDCC aims to be a conforming freestanding implementation of the C programming language. The latest publicly
available version of the standard ISO/IEC 9899 - Programming languages - C should be available at: http:
//www.open-std.org/jtc1/sc22/wg14/www/standards.html#9899.

3.1.1 ISO C90 and ANSI C89
Use --std-c89 to compile in this mode.

Deviations from standard compliance:

• initialization of structure arrays must be fully braced.

struct s { char x } a[] = {1, 2}; /* invalid in SDCC */
struct s { char x } a[] = {{1}, {2}}; /* OK */

• ’double’ precision floating point not supported. Instead a warning is emitted, and float is used instead. long
double is treated the same.

• K&R style function declarations are not supported.

foo(i,j) /* this old style of function declarations */
int i,j; /* is valid in ANSI but not valid in SDCC */
{

...
}

Some features of this standard are not supported in some ports:

• pic14, pic16: structures and unions cannot be passed as function parameters; hc08, s08, mos6502, pic14,
pic16: they cannot be a return value from a function, e.g.:

struct s { ... };
struct s foo1 (struct s parms) /* invalid in SDCC although allowed

in ANSI */
{

struct s rets;
...
return rets; /* is invalid in SDCC although allowed in ANSI

*/
}

• mcs51, ds390, hc08, s08, pdk13, pdk14, pdk15 and mos6502 ports: functions are not reentrant unless explic-
itly declared as such or --stack-auto is specified.

26

http://www.open-std.org/jtc1/sc22/wg14/www/standards.html#9899
http://www.open-std.org/jtc1/sc22/wg14/www/standards.html#9899

3.1. STANDARD-COMPLIANCE CHAPTER 3. USING SDCC

3.1.2 ISO C95
Use --std-c95 to compile in this mode.

Except for the issues mentioned in the section above, this standard is supported.

3.1.3 ISO C99
Use --std-c99 to compile in this mode.

In addition to what is mentioned in the section above, the following features of this standard are not supported
by SDCC:

• Compound literals.

• Objects of variably-modified types.

• ptrdiff_t has 16 bits, while the standard requires at least 17 bits.

Some features of this standard are not supported in some ports:

• pic14, pic16: there is no support for data types long long, unsigned long long, int_fast64_t, int_least64_t,
int64_t, uint_fast64_t, uint_least64_t, uint64_t.

3.1.4 ISO C11 and ISO C17
Use --std-c11 to compile in this mode.

Except for the issues mentioned in the section above, this standard is supported.

3.1.5 ISO C23
Use --std-c23 to compile in this mode.

Deviations from standard compliance:

• initialization of structure arrays must be fully braced.

struct s { char x } a[] = {1, 2}; /* invalid in SDCC */
struct s { char x } a[] = {{1}, {2}}; /* OK */

• ’double’ precision floating point not supported. Instead a warning is emitted, and float is used instead. long
double is treated the same.

• Compound literals are not supported.

• Support for attributes is slightly incomplete.

• Checked integer arithmetic is not supported for (unsigned) long long.

• Qualifier-preserving standard library functions are not implemented.

• Enhanced enumerations are not implemented.

• constexpr is not implemented.

Some features of this standard are not supported in some ports:

• pic14, pic16: structures and unions cannot be passed as function parameters; hc08, s08, mos6502, pic14,
pic16: they cannot be a return value from a function, e.g.:

struct s { ... };
struct s foo1 (struct s parms) /* invalid in SDCC although allowed

in ANSI */
{

struct s rets;
...
return rets; /* is invalid in SDCC although allowed in ANSI

*/
}

27

3.1. STANDARD-COMPLIANCE CHAPTER 3. USING SDCC

• mcs51, ds390, hc08, s08, pdk13, pdk14, pdk15 and mos6502 ports: functions are not reentrant unless explic-
itly declared as such or --stack-auto is specified.

• pic14, pic16: there is no support for data types long long, unsigned long long, int_fast64_t, int_least64_t,
int64_t, uint_fast64_t, uint_least64_t, uint64_t.

• pic14, pic16: _BitInt is not supported.

3.1.6 Embedded C
SDCC supports objects in named address spaces and to some degree pointers to such objects. The support for
fixed-point math in SDCC is inconsistent with the standard. Other parts of the standard are not supported.

3.1.7 Implementation-defined behavior
3.1.7.1 Translation

• Diagnostics are output to stderr, in the format <filename>:<line-number>: <warning|error> <diagnostic-
number>: <diagnostic-description>

• Nonempty sequences of white-space are retained in translation phase 3.

3.1.7.2 Environment

• See SDCC source (and your own code if you use a custom crt0 for a target that supports it) for any information
on the environment.

3.1.7.3 Identifiers

• See the compiler and assembler source for information on characters that may appear in identifiers and on
the number of significant initial characters.

3.1.7.4 Characters

• There are 8 bits in a byte.

• Values of members of the execution character set: TODO.

• Values of members of the execution character set for escape sequences: TODO.

• Value of char with something weird stored in it: TODO.

• unsigned char has the same range, representation and behavior as ”plain” char.

• See the SDCC source for further information on character sets.

3.1.7.5 Integers

• There are no extended integer types.

3.1.7.6 Floating point

• See the implementation (soft float library) for any information on floating point.

3.1.7.7 Arrays and Pointers

• For the result of converting between pointers and integers see the SDCC source code.

• For the size of the result of subtracting two pointers to elements of the same array see the SDCC source code.

28

3.1. STANDARD-COMPLIANCE CHAPTER 3. USING SDCC

3.1.7.8 Hints

• The extend to which suggestions made by register are effective depends on the target.

• SDCC will inline functions if and only if they are declared using inline and do not have variable arguments.

3.1.7.9 Structures, unions, enumerations and bit-fields

• A plain int bit-field is treated as an unsigned int bit-field.

• There are no allowed bit-field types other than _Bool, signed int and unsigned int.

• Atomic types are not permitted for bit-fields.

• If a bit-fields does not fit into the same byte as the previous bit-fields, it starts on the next byte.

• bit-fields are allocated in the same order as they appear in the source.

• Non-bit-field members of structures are aligned on byte boundaries (i.e. there are no padding bytes).

• For enumerations, the compatible type is the first from the following list that fits the constants: bool, unsigned
char, signed char, unsigned int, signed int, unsigned long int, signed long int, unsigned long long int, signed
long long int.

3.1.7.10 Qualifiers

• SDCC shall preserve all volatile reads and writes, but does not guarantee them to be atomic (except for atomic
types and volatile sig_atomic_t).

3.1.7.11 Preprocessing directives

• See the preprocessor source for information on preprocessing directives.

3.1.7.12 Library functions

• See the respective library headers for the library functions available.

• See assert.h and library source for the format of the diagnostic printed by the assert macro.

• There is no fegetexceptflag function.

• There is no feraiseexcept function.

• There is no setlocale function.

• There is no FLT_EVAL_METHOD macro.

• There is no DEC_EVAL_METHOD macro.

• There are no non-required domain errors for mathematics functions.

• See library source for the values returned by mathematical functions on domain error and pole error (and
anything else on mathematical functions and floating type encodings).

• See library headers for the null-pointer constant to which NULL expands.

• See library headers and source for anything else about the library.

29

3.2. COMPILING CHAPTER 3. USING SDCC

3.1.7.13 Architecture

• See the respective library headers for the values or expressions for macros specified in float.h, limits.h,
stdint.h.

• Multithreading is not supported.

• The number of bytes in any object is the minimum allowed (except for some padding bits on bit-fields), byte
order depends on the target.

• No extended alignments are supported.

• There are no valid alignments other than those returned by _Alignof.

• sizeof always returns the smallest value allowed assuming an 8-bit char. _Alignof always returns 0.

3.2 Compiling

3.2.1 Single Source File Projects
For single source file 8051 projects the process is very simple. Compile your programs with the following command
"sdcc sourcefile.c". This will compile, assemble and link your source file. Output files are as follows:

• sourcefile.asm - Assembler source file created by the compiler

• sourcefile.lst - Assembler listing file created by the Assembler

• sourcefile.rst - Assembler listing file updated with linkedit information, created by linkage editor

• sourcefile.sym - symbol listing for the sourcefile, created by the assembler

• sourcefile.rel - Object file created by the assembler, input to Linkage editor

• sourcefile.map - The memory map for the load module, created by the Linker

• sourcefile.mem - A file with a summary of the memory usage

• sourcefile.ihx - The load module in Intel hex format (you can select the Motorola S19 format with --out-fmt-
s19. If you need another format you might want to use objdump or srecord - see also section 3.2.2). Both
formats are documented in the documentation of srecord

• sourcefile.adb - An intermediate file containing debug information needed to create the .cdb file (with --
debug)

• sourcefile.cdb - An optional file (with --debug) containing debug information. The format is documented in
cdbfileformat.pdf

• sourcefile.omf - An optional AOMF or AOMF51 file containing debug information (generated with option
--debug). The (Intel) absolute object module f ormat is a subformat of the OMF51 format and is commonly
used by third party tools (debuggers, simulators, emulators).

• sourcefile.dump* - Dump file to debug the compiler it self (generated with option --dumpall) (see section
3.3.13 and section 9.1 ”Anatomy of the compiler”).

3.2.2 Postprocessing the Intel Hex file
In most cases this won’t be needed but the Intel Hex file which is generated by SDCC might include lines of
varying length and the addresses within the file are not guaranteed to be strictly ascending. If your toolchain or a
bootloader does not like this you can use the tool packihx which is part of the SDCC distribution:

packihx sourcefile.ihx >sourcefile.hex

The separately available srecord package additionally allows to set undefined locations to a predefined value, to

30

3.2. COMPILING CHAPTER 3. USING SDCC

insert checksums of various flavours (crc, add, xor) and to perform other manipulations (convert, split, crop, offset,
...).

srec_cat sourcefile.ihx -intel -o sourcefile.hex -intel

An example for a more complex command line1 could look like:

srec_cat sourcefile.ihx -intel -fill 0x12 0x0000 0xfffe -little-endian-checksum-negative 0xfffe 0x02 0x02 -o source-
file.hex -intel

The srecord package is available at http://sourceforge.net/projects/srecord/.

3.2.3 Projects with Multiple Source Files
SDCC can compile only ONE file at a time. Let us for example assume that you have a project containing the
following files:

foo1.c (contains some functions)
foo2.c (contains some more functions)
foomain.c (contains more functions and the function main)

The first two files will need to be compiled separately with the commands:

sdcc -c foo1.c
sdcc -c foo2.c

Then compile the source file containing the main() function and link the files together with the following command:

sdcc foomain.c foo1.rel foo2.rel

Alternatively, foomain.c can be separately compiled as well:

sdcc -c foomain.c
sdcc foomain.rel foo1.rel foo2.rel

The file containing the main() function MUST be the FIRST file specified in the command line, since the
linkage editor processes file in the order they are presented to it. The linker is invoked from SDCC using a script
file with extension .lnk. You can view this file to troubleshoot linking problems such as those arising from missing
libraries.

3.2.4 Projects with Additional Libraries
Some reusable routines may be compiled into a library, see the documentation for the assembler and linkage editor
(which are in <installdir>/share/sdcc/doc) for how to create a .lib library file. Section 3.2.5 below contains a
minimal example. Libraries created in this manner can be included in the command line. Make sure you include
the -L <library-path> option to tell the linker where to look for these files if they are not in the current directory.
Here is an example, assuming you have the source file foomain.c and a library foolib.lib in the directory mylib (if
that is not the same as your current project):

sdcc foomain.c foolib.lib -L mylib

Note here that mylib must be an absolute path name.

The most efficient way to use libraries is to keep separate modules in separate source files. The lib file

1the command backfills unused memory with 0x12 and the overall 16 bit sum of the complete 64 kByte block is zero. If the program counter
on an mcs51 runs wild the backfill pattern 0x12 will be interpreted as an lcall to address 0x1212 (where an emergency routine could sit).

31

http://sourceforge.net/projects/srecord/

3.3. COMMAND LINE OPTIONS CHAPTER 3. USING SDCC

now should name all the modules.rel files. For an example see the standard library file libsdcc.lib in the directory
<installdir>/share/lib/small.

3.2.5 Using sdar to Create and Manage Libraries
Support for sdar format libraries was introduced in SDCC 2.9.0.

Both the GNU and BSD ar format variants are supported by sdld linkers.

To create a library containing sdas object files, you should use the following sequence:

sdar -rc <library name>.lib <list of .rel files>

3.3 Command Line Options

3.3.1 Processor Selection Options
-mmcs51 Generate code for the Intel MCS51 family of processors. This is the default processor target.

-mds390 Generate code for the Dallas DS80C390 processor.

-mds400 Generate code for the Dallas DS80C400 processor.

-mhc08 Generate code for the Freescale/Motorola HC08 (aka 68HC08) family of processors.

-ms08 Generate code for the Freescale/Motorola S08 (aka 68HCS08, HCS08, CS08) family of processors.

-mz80 Generate code for the Zilog Z80 family of processors.

-mz180 Generate code for the Zilog Z180 family of processors.

-mr2k Generate code for the Rabbit 2000 / Rabbit 3000 family of processors.

-mr3ka Generate code for the Rabbit 3000A family of processors.

-msm83 Generate code for the Sharp SM83 processor.

-mtlcs90 Generate code for the Toshiba TLCS-90 processor.

-mez80_z80 Generate code for the Zilog eZ80 processor in Z80 mode.

-mstm8 Generate code for the STMicroelectronics STM8 family of processors.

-mpdk13 Generate code for Padauk processors with 13 bit wide program memory.

-mpdk14 Generate code for Padauk processors with 14 bit wide program memory.

-mpdk15 Generate code for Padauk processors with 15 bit wide program memory.

-mpic14 Generate code for the Microchip PIC 14-bit processors (p16f84 and variants. In development, not
complete).

-mpic16 Generate code for the Microchip PIC 16-bit processors (p18f452 and variants. In development, not
complete).

-mmos6502 Generate code for the original MOS Technology NMOS 6502 processor and compatible derivatives
including the 6510 and 8502.

-mmos65c02 Generate code for the CMOS Rockwell/WDC 65C02.

SDCC inspects the program name it was called with so the processor family can also be selected by renaming the
sdcc binary (to f.e. z80-sdcc) or by calling SDCC from a suitable link. Option -m has higher priority than setting
from program name.

32

3.3. COMMAND LINE OPTIONS CHAPTER 3. USING SDCC

3.3.2 Preprocessor Options
SDCC uses sdcpp, an adapted version of the GNU Compiler Collection preprocessor cpp (gcc http://gcc.
gnu.org/). If you need more dedicated options than those listed below please refer to the GCC CPP Manual at
http://www.gnu.org/software/gcc/onlinedocs/.

-I<path> The additional location where the preprocessor will look for <..h> or “..h” files.

-D<macro[=value]> Command line definition of macros. Passed to the preprocessor.

-M Tell the preprocessor to output a rule suitable for make describing the dependencies of each object file.
For each source file, the preprocessor outputs one make-rule whose target is the object file name for
that source file and whose dependencies are all the files ‘#include’d in it. This rule may be a single line
or may be continued with ‘\’-newline if it is long. The list of rules is printed on standard output instead
of the preprocessed C program. ‘-M’ implies ‘-E’.

-C Tell the preprocessor not to discard comments. Used with the ‘-E’ option.

-MM Like ‘-M’ but the output mentions only the user header files included with ‘#include “file"’. System
header files included with ‘#include <file>’ are omitted.

-Aquestion(answer) Assert the answer answer for question, in case it is tested with a preprocessor conditional
such as ‘#if #question(answer)’. ‘-A-’ disables the standard assertions that normally describe the target
machine.

-Umacro Undefine macro macro. ‘-U’ options are evaluated after all ‘-D’ options, but before any ‘-include’ and
‘-imacros’ options.

-dM Tell the preprocessor to output only a list of the macro definitions that are in effect at the end of
preprocessing. Used with the ‘-E’ option.

-dD Tell the preprocessor to pass all macro definitions into the output, in their proper sequence in the rest
of the output.

-dN Like ‘-dD’ except that the macro arguments and contents are omitted. Only ‘#define name’ is included
in the output.

-Wp preprocessorOption[,preprocessorOption]... Pass the preprocessorOption to the preprocessor sdcpp.

3.3.3 Optimization Options
--nogcse Will not do global common subexpression elimination, this option may be used when the compiler

creates undesirably large stack/data spaces to store compiler temporaries (spill locations, sloc). A
warning message will be generated when this happens and the compiler will indicate the number of
extra bytes it allocated. It is recommended that this option NOT be used, #pragma nogcse can be used
to turn off global subexpression elimination for a given function only.

--noinvariant Will not do loop invariant optimizations, this may be turned off for reasons explained for the previ-
ous option. For more details of loop optimizations performed see Loop Invariants in section 8.1.4. It
is recommended that this option NOT be used, #pragma noinvariant can be used to turn off invariant
optimizations for a given function only.

--noinduction Will not do loop induction optimizations, see section strength reduction for more details. It is
recommended that this option is NOT used, #pragma noinduction can be used to turn off induction
optimizations for a given function only.

--noloopreverse Will not do loop reversal optimization.

--nolabelopt Will not optimize labels (makes the dumpfiles more readable).

--no-xinit-opt Will not memcpy initialized data from code space into xdata space. This saves a few bytes in code
space if you don’t have initialized data.

33

http://gcc.gnu.org/
http://gcc.gnu.org/
http://www.gnu.org/software/gcc/onlinedocs/

3.3. COMMAND LINE OPTIONS CHAPTER 3. USING SDCC

--nooverlay The compiler will not overlay parameters and local variables of any function, see section Parameters
and local variables for more details.

--no-peep Disable peep-hole optimization with built-in rules.

--peep-file <filename> This option can be used to use additional rules to be used by the peep hole optimizer. See
section 8.1.16 Peep Hole optimizations for details on how to write these rules.

--peep-asm Pass the inline assembler code through the peep hole optimizer. This can cause unexpected changes
to inline assembler code, please go through the peephole optimizer rules defined in the source file tree
’<target>/peeph.def’ before using this option.

--peep-return Let the peep hole optimizer do return optimizations. This is the default without --debug.

--no-peep-return Do not let the peep hole optimizer do return optimizations. This is the default with --debug.

--opt-code-speed The compiler will optimize code generation towards fast code, possibly at the expense of code
size.

--opt-code-size The compiler will optimize code generation towards compact code, possibly at the expense of code
speed.

--fomit-frame-pointer Frame pointer will be omitted when the function uses no local variables. On the z80-related
ports this option will result in the frame pointer always being omitted.

--max-allocs-per-node Setting this to a high value will result in increased compilation time (and increased memory
use during compilation) and more optimized code being generated. Setting it to lower values speeds
up compilation, but does not optimize as much. The default value is 3000. This option currently does
not affect the mcs51, ds390, pic14 and pic16 ports.

--nolospre Disable lospre. lospre is an advanced redundancy elimination technique, essentially an improved vari-
ant of global subexpression elimination.

--allow-unsafe-read Allow optimizations to generate unsafe reads. This will enable additional optimizations, but
can result in spurious reads from undefined memory addresses, which can be harmful if the target
system uses certain ways of doing memory-mapped I/O.

--nostdlibcall Disable the optimization of calls to the standard library.

3.3.4 Other Options
-v --version displays the sdcc version.

-c --compile-only will compile and assemble the source, but will not call the linkage editor.

--c1mode reads the preprocessed source from standard input and compiles it. The file name for the assembler
output must be specified using the -o option.

-E Run only the C preprocessor. Preprocess all the C source files specified and output the results to
standard output.

--syntax-only Parse and verify syntax only, no output files are produced.

-o <path/file> The output path where everything will be placed or the file name used for all generated output
files. If the parameter is a path, it must have a trailing slash (or backslash for the Windows bina-
ries) to be recognized as a path. Note for Windows users: if the path contains spaces, it should be
surrounded by quotes. The trailing backslash should be doubled in order to prevent escaping the fi-
nal quote, for example: -o ”F:\Projects\test3\output 1\\” or put after the final quote, for example: -o
”F:\Projects\test3\output 1”\. The path using slashes for directory delimiters can be used too, for
example: -o ”F:/Projects/test3/output 1/”.

-x <type> The specified type overrides the file type that SDCC detected based on the file name extension. The
currently supported options are ”c”, ”c-header” and ”none”. The option ”none” restores the default
behavior.

34

3.3. COMMAND LINE OPTIONS CHAPTER 3. USING SDCC

--stack-auto All functions in the source file will be compiled as reentrant, i.e. the parameters and local variables
will be allocated on the stack. See section 3.6 Parameters and Local Variables for more details. If
this option is used all source files in the project should be compiled with this option. It automatically
implies --int-long-reent and --float-reent.

--callee-saves function1[,function2][,function3].... The compiler by default uses a caller saves convention for
register saving across function calls, however this can cause unnecessary register pushing and popping
when calling small functions from larger functions. This option can be used to switch the register
saving convention for the function names specified. The compiler will not save registers when calling
these functions, no extra code will be generated at the entry and exit (function prologue and epilogue)
for these functions to save and restore the registers used by these functions, this can SUBSTANTIALLY
reduce code and improve run time performance of the generated code. In the future the compiler (with
inter procedural analysis) will be able to determine the appropriate scheme to use for each function
call. DO NOT use this option for built-in functions such as _mulint..., if this option is used for a library
function the appropriate library function needs to be recompiled with the same option. If the project
consists of multiple source files then all the source file should be compiled with the same --callee-saves
option string. Also see #pragma callee_saves on page 62.

--all-callee-saves Function of --callee-saves will be applied to all functions by default.

--debug When this option is used the compiler will generate debug information. By default, the debug infor-
mation collected in a file with .cdb extension can be used with the SDCDB. For more information see
documentation for SDCDB. Another file with a .omf extension contains debug information in AOMF
or AOMF51 format which is commonly used by third party tools. When –out-gmt-elf is used, the
debug information is in DWARF format instead.

-S Stop after the stage of compilation proper; do not assemble. The output is an assembler code file for
the input file specified.

--int-long-reent Integer (16 bit) and long (32 bit) libraries have been compiled as reentrant. Note by default these
libraries are compiled as non-reentrant. See section Installation for more details.

--cyclomatic This option will cause the compiler to generate an information message for each function in the
source file. The message contains some important information about the function. The number of
edges and nodes the compiler detected in the control flow graph of the function, and most importantly
the cyclomatic complexity see section on Cyclomatic Complexity for more details.

--float-reent Floating point library is compiled as reentrant. See section Installation for more details.

--fsigned-char By default char is unsigned. To set the signedness for characters to signed, use the option --
fsigned-char. If this option is set and no signedness keyword (unsigned/signed) is given, a char will be
unsigned. All other types are unaffected.

--nostdinc This will prevent the compiler from passing on the default include path to the preprocessor.

--nostdlib This will prevent the compiler from passing on the default library path to the linker.

--verbose Shows the various actions the compiler is performing.

-V Shows the actual commands the compiler is executing.

--no-c-code-in-asm Hides your ugly and inefficient c-code from the asm file, so you can always blame the compiler
:)

--no-peep-comments Don’t include peep-hole comments in the generated asm files even if --fverbose-asm option
is specified.

--i-code-in-asm Include i-codes in the asm file. Sounds like noise but is helpful for debugging the compiler itself.

--less-pedantic Disable some of the more pedantic warnings. For more details, see the less_pedantic pragma on
page 62.

--disable-warning <nnnn> Disable specific warning with number <nnnn>.

35

3.3. COMMAND LINE OPTIONS CHAPTER 3. USING SDCC

--Werror Treat all warnings as errors.

--print-search-dirs Display the directories in the compiler’s search path

--vc Display errors and warnings using MSVC style, so you can use SDCC with the visual studio IDE.
With SDCC both offering a GCC-like (the default) and a MSVC-like output style, integration into
most programming editors should be straightforward.

--use-stdout Send errors and warnings to stdout instead of stderr.

-Wa asmOption[,asmOption]... Pass the asmOption to the assembler. See file sdcc/sdas/doc/asmlnk.txt for as-
sembler options.cd

--std-<arg> Determine the language standard. For enhanced compatibility with other compilers, --std can also be
used with a single dash (i.e. -std) and with = or (whitespace) as delimiter. The language standard,
specified via <arg>, can be one of the following:

c89 Follow the ANSI C89 / ISO C90 standard. Alternative spellings: c90, iso9899:1990
c95 Follow the ISO C90 standard as modified in amendment 1. Alternative spelling:

iso9899:199409
c99 Follow the ISO C99 standard. Alternative spelling: iso9899:1999
c11 Follow the ISO C11 standard. Alternative spelling: iso9899:2011
c17 Follow the ISO C17 standard. Alternative spellings: iso9899:2017, c18, iso9899:2018
c23 Follow the ISO C23 standard. Alternative spelling: c2x
sdcc89 Generally follow the ANSI C89 / ISO C90 standard, but allow some SDCC behaviour

that conflicts with the standard. Alternative spelling: sdcc90
sdcc99 Generally follow the ISO C99 standard, but allow some SDCC behaviour that conflicts

with the standard.

sdcc11 Generally follow the ISO C11 standard, but allow some SDCC behaviour that conflicts
with the standard (default).

sdcc17 Generally follow the ISO C17 standard, but allow some SDCC behaviour that conflicts
with the standard. Alternative spelling: sdcc18

sdcc23 Generally follow the ISO C23 standard, but allow some SDCC behaviour that conflicts
with the standard. Alternative spelling: sdcc2x

--codeseg <Name> The name to be used for the code segment, default CSEG. This is useful if you need to tell the
compiler to put the code in a special segment so you can later on tell the linker to put this segment in
a special place in memory. Can be used for instance when using bank switching to put the code in a
bank.

--constseg <Name> The name to be used for the const segment, default CONST. This is useful if you need to tell
the compiler to put the const data in a special segment so you can later on tell the linker to put this
segment in a special place in memory. Can be used for instance when using bank switching to put the
const data in a bank.

--fdollars-in-identifiers Permit ’$’ as an identifier character.

--more-pedantic Actually this is not a SDCC compiler option but if you want more warnings you can use a sepa-
rate tool dedicated to syntax checking like splint http://www.splint.org. To make your source
files parseable by splint you will have to include lint.h in your source file and add brackets around ex-
tended keywords (like ”__at (0xab)” and ”__interrupt (2)”).
Splint has an excellent on line manual at http://www.splint.org/manual/ and it’s capabili-
ties go beyond pure syntax checking. You’ll need to tell splint the location of SDCC’s include files so
a typical command line could look like this:
splint -I /usr/local/share/sdcc/include/mcs51/ myprogram.c

--use-non-free Search / include non-free licensed libraries and header files, located under the non-free directory -
see section 2.3

36

http://www.splint.org
http://www.splint.org/manual/

3.3. COMMAND LINE OPTIONS CHAPTER 3. USING SDCC

3.3.5 Linker Options
--lib-path <absolute path to additional libraries> This option is passed to the linkage editor’s additional libraries

search path. The path name must be absolute. Additional library files may be specified in the command
line. See section Compiling programs for more details.

-L <absolute path to additional libraries> Same as above.

--xram-loc <Value> The start location of the external ram, default value is 0. The value entered can be in Hex-
adecimal or Decimal format, e.g.: --xram-loc 0x8000 or --xram-loc 32768.

--code-loc <Value> The start location of the code segment, default value 0. Note when this option is used the
interrupt vector table is also relocated to the given address. The value entered can be in Hexadecimal
or Decimal format, e.g.: --code-loc 0x8000 or --code-loc 32768.

--stack-loc <Value> The value entered can be in Hexadecimal or Decimal format, e.g. --stack-loc 0x20 or --stack-
loc 32.

For stm8, by default the stack is placed at the device-specific reset value. By using this option, the stack
can be placed anywhere in the lower 16-bits of the stm8 memory space. This is particularly useful for
working around the stack roll-over antifeature present in some stm8 devices.

--xstack-loc <Value> By default the external stack is placed after the __pdata segment. Using this option the
xstack can be placed anywhere in the external memory space of the 8051. The value entered can be in
Hexadecimal or Decimal format, e.g. --xstack-loc 0x8000 or --xstack-loc 32768. The provided value
should not overlap any other memory areas such as the pdata or xdata segment and with enough space
for the current application.

--data-loc <Value> The start location of the internal ram data segment. The value entered can be in Hexadecimal
or Decimal format, eg. --data-loc 0x20 or --data-loc 32. (By default, the start location of the internal
ram data segment is set as low as possible in memory, taking into account the used register banks and
the bit segment at address 0x20. For example if register banks 0 and 1 are used without bit variables,
the data segment will be set, if --data-loc is not used, to location 0x10.)

--idata-loc <Value> The start location of the indirectly addressable internal ram of the 8051, default value is 0x80.
The value entered can be in Hexadecimal or Decimal format, eg. --idata-loc 0x88 or --idata-loc 136.

--bit-loc <Value> The start location of the bit addressable internal ram of the 8051. This is not implemented yet.
Instead an option can be passed directly to the linker: -Wl -bBSEG=<Value>.

--out-fmt-ihx The linker output (final object code) is in Intel Hex format. This is the default option. The format
itself is documented in the documentation of srecord.

--out-fmt-s19 The linker output (final object code) is in Motorola S19 format. The format itself is documented in
the documentation of srecord.

--out-fmt-elf The linker output (final object code) is in ELF format. (Currently only supported for the HC08, S08
and STM8 processors). When used with –debug, the debug info is in DWARF format instead of CDB.

-Wl linkOption[,linkOption]... Pass the linkOption to the linker. If a bootloader is used an option like ”-Wl -
bCSEG=0x1000” would be typical to set the start of the code segment. Either use the double quotes
around this option or use no space (e.g. -Wl-bCSEG=0x1000). See also #pragma constseg and
#pragma codeseg in section3.16. File sdcc/sdas/doc/asmlnk.txt has more on linker options.

3.3.6 MCS51 Options
--model-small Generate code for Small model programs, see section Memory Models for more details. This is the

default model.

--model-medium Generate code for Medium model programs, see section Memory Models for more details. If
this option is used all source files in the project have to be compiled with this option. It must also be
used when invoking the linker.

37

3.3. COMMAND LINE OPTIONS CHAPTER 3. USING SDCC

--model-large Generate code for Large model programs, see section Memory Models for more details. If this
option is used all source files in the project have to be compiled with this option. It must also be used
when invoking the linker.

--model-huge Generate code for Huge model programs, see section Memory Models for more details. If this
option is used all source files in the project have to be compiled with this option. It must also be used
when invoking the linker.

--xstack Uses a pseudo stack in the __pdata area (usually the first 256 bytes in the external ram) for allocating
variables and passing parameters. See section 3.15.1.2 External Stack for more details.

--iram-size <Value> Causes the linker to check if the internal ram usage is within limits of the given value.

--xram-size <Value> Causes the linker to check if the external ram usage is within limits of the given value.

--code-size <Value> Causes the linker to check if the code memory usage is within limits of the given value.

--stack-size <Value> Causes the linker to check if there is at minimum <Value> bytes for stack.

--acall-ajmp Replaces the three byte instructions lcall/ljmp with the two byte instructions acall/ajmp. Only use
this option if your code is in the same 2k block of memory. You may need to use this option for some
8051 derivatives which lack the lcall/ljmp instructions.

--no-ret-without-call Causes the code generator to insert an extra lcall or acall instruction whenever it needs to
use a ret instruction in a context other than a function returning. This option is needed when using the
Infineon XC800 series microcontrollers to keep its Memory Extension Stack balanced.

3.3.7 DS390 / DS400 Options
--model-flat24 Generate 24-bit flat mode code. This is the one and only that the ds390 code generator supports

right now and is default when using -mds390. See section Memory Models for more details.

--protect-sp-update disable interrupts during ESP:SP updates.

--stack-10bit Generate code for the 10 bit stack mode of the Dallas DS80C390 part. This is the one and only that
the ds390 code generator supports right now and is default when using -mds390. In this mode, the
stack is located in the lower 1K of the internal RAM, which is mapped to 0x400000. Note that the
support is incomplete, since it still uses a single byte as the stack pointer. This means that only the
lower 256 bytes of the potential 1K stack space will actually be used. However, this does allow you to
reclaim the precious 256 bytes of low RAM for use for the DATA and IDATA segments. The compiler
will not generate any code to put the processor into 10 bit stack mode. It is important to ensure that
the processor is in this mode before calling any re-entrant functions compiled with this option. In
principle, this should work with the --stack-auto option, but that has not been tested. It is incompatible
with the --xstack option. It also only makes sense if the processor is in 24 bit contiguous addressing
mode (see the --model-flat24 option).

--stack-probe insert call to function __stack_probe at each function prologue.

--tini-libid <nnnn> LibraryID used in -mTININative.

--use-accelerator generate code for DS390 Arithmetic Accelerator.

3.3.8 Options common to all z80-related ports (z80, z180, r2k, r3ka, sm83, tlcs90,
ez80_z80)

--no-std-crt0 When linking, skip the standard crt0.rel object file. You must provide your own crt0.rel for your
system when linking.

--callee-saves-bc Force a called function to always save BC.

--codeseg <Value> Use <Value> for the code segment name.

--constseg <Value> Use <Value> for the const segment name.

38

3.3. COMMAND LINE OPTIONS CHAPTER 3. USING SDCC

3.3.9 Z80 Options (apply to z80, z180, r2k, r3ka, tlcs90, ez80_z80)
--portmode=<Value> Determinate PORT I/O mode (<Value> is z80 or z180).

--asm=<Value> Define assembler name (<Value> is rgbds, sdasz80, isas or z80asm).

--reserve-regs-iy This option tells the compiler that it is not allowed to use register pair iy. The option can be useful
for systems where iy is reserved for the OS. This option is incompatible with --fomit-frame-pointer.

--fno-omit-frame-pointer Never omit the frame pointer.

3.3.10 SM83 Options
-bo <Num> Use code bank <Num>.

-ba <Num> Use data bank <Num>.

3.3.11 STM8 Options
--model-medium Generate code for Medium model programs, see section Memory Models for more details. This

is the default model.

--model-large Generate code for Large model programs, see section Memory Models for more details. If this
option is used all source files in the project have to be compiled with this option. It must also be used
when invoking the linker.

3.3.12 MOS6502 Options (apply to mos6502, mos65c02)
--model-small Generate code for small model programs, see section Memory Models for more details.

--model-large Generate code for large model programs, see section Memory Models for more details. This is the
default memory model.

--no-zp-spill Force the compiler to spill registers to 16-bit addressable memory (xdata) instead of Page Zero. When
running out of Page Zero space, this option will allow to free many Page Zero locations at the expense
of slightly larger and slower code

3.3.13 Intermediate Dump Options
The following options are provided for the purpose of retargetting and debugging the compiler. They provide a
means to dump the intermediate code (iCode) generated by the compiler in human readable form at various stages
of the compilation process. More on iCodes see chapter 9.1 ”The anatomy of the compiler”.

--dum-ast This option will cause the compiler to dump the abstract syntax tree to the econsole.

--dump-i-code Will dump iCodes at various stages into files named <source filename>.dump<stage>.

--dump-graphs Will dump internal representations as graphviz .dot files. Depending on other options, this can
include the control-flow graph at lospre, insertion of bank selection instructions or register allocation
and the conflict graph and tree-decomposition at register allocation.

--fverbose-asm Include code generator and peep-hole comments in the generated asm files.

3.3.14 Redirecting output on Windows Shells
By default SDCC writes its error messages to ”standard error”. To force all messages to ”standard out-
put” use --use-stdout. Additionally, if you happen to have visual studio installed in your windows machine, you
can use it to compile your sources using a custom build and the SDCC --vc option. Something like this should work:

c:\sdcc\bin\sdcc.exe --vc --model-large -c $(InputPath)

39

3.4. ENVIRONMENT VARIABLES CHAPTER 3. USING SDCC

3.4 Environment variables
SDCC recognizes the following environment variables:

SDCC_LEAVE_SIGNALS SDCC installs a signal handler to be able to delete temporary files after an user break
(^C) or an exception. If this environment variable is set, SDCC won’t install the signal handler in order
to be able to debug SDCC.

TMP, TEMP, TMPDIR Path, where temporary files will be created. The order of the variables is the search order.
In a standard *nix environment these variables are not set, and there’s no need to set them. On Windows
it’s recommended to set one of them.

SDCC_HOME Path, see section 2.2 ” Install Paths”.

SDCC_INCLUDE Path, see section 2.3 ”Search Paths”.

SDCC_LIB Path, see section 2.3 ”Search Paths”..

There are some more environment variables recognized by SDCC, but these are mainly used for debugging pur-
poses. They can change or disappear very quickly, and won’t be documented2.

3.5 SDCC Language Extensions
SDCC supports some language extensions useful for embedded systems. These include named address spaces (see
also section 5.1 of the Embedded C standard). SDCC supports both intrinsic named address spaces (which ones are
supported depends on the target architecture) and non-intrinsic named address spaces (defined by the user using the
keyword __addressmod, they are particularly useful with custom bank-switching hardware). Unlike the Embedded
C standard, SDCC allows local variables to have an intrinsic named address space even when not explicitly declared
as static or extern. Depending on the target architecture, support can be limited to objects in such address spaces
and exclude pointer-based access to those.

3.5.1 MCS51/DS390 intrinsic named address spaces
SDCC supports the following MCS51-specific intrinsic address spaces:

3.5.1.1 __data / __near

This is the default (generic) address space for the Small Memory model. Variables in this address space will be
allocated in the directly addressable portion of the internal RAM of a 8051, e.g.:

__data unsigned char test_data;

Writing 0x01 to this variable generates the assembly code:

75*00 01 mov _test_data,#0x01
2if you are curious search in SDCC’s sources for ”getenv”

40

3.5. SDCC LANGUAGE EXTENSIONS CHAPTER 3. USING SDCC

3.5.1.2 __xdata / __far

Variables in this address space will be placed in the external RAM. This is the default (generic) address space for
the Large Memory model, e.g.:

__xdata unsigned char test_xdata;

Writing 0x01 to this variable generates the assembly code:

90s00r00 mov dptr,#_test_xdata
74 01 mov a,#0x01
F0 movx @dptr,a

3.5.1.3 __idata

Variables in this address space will be allocated into the indirectly addressable portion of the internal ram of a 8051,
e.g.:

__idata unsigned char test_idata;

Writing 0x01 to this variable generates the assembly code:

78r00 mov r0,#_test_idata
76 01 mov @r0,#0x01

Please note, the first 128 byte of idata physically access the same RAM as the data memory. The original 8051 had
128 byte idata memory, nowadays most devices have 256 byte idata memory. The stack is located in idata memory
(unless --xstack is specified).

3.5.1.4 __pdata

Paged xdata access is just as straightforward as using the other addressing modes of a 8051. It is typically located
at the start of xdata and has a maximum size of 256 bytes. The following example writes 0x01 to the pdata variable.
Please note, pdata access physically accesses xdata memory. The high byte of the address is determined by port
P2 (or in case of some 8051 variants by a separate Special Function Register, see section 4.1). This is the default
(generic) address space for the Medium Memory model, e.g.:

__pdata unsigned char test_pdata;

Writing 0x01 to this variable generates the assembly code:

78r00 mov r0,#_test_pdata
74 01 mov a,#0x01
F2 movx @r0,a

If the --xstack option is used the pdata memory area is followed by the xstack memory area and the sum of their
sizes is limited to 256 bytes.

3.5.1.5 __code

’Variables’ in this address space will be placed in the code memory:

__code unsigned char test_code;

Read access to this variable generates the assembly code:

90s00r6F mov dptr,#_test_code
E4 clr a
93 movc a,@a+dptr

char indexed arrays of characters in code memory can be accessed efficiently:

__code char test_array[] = {’c’,’h’,’e’,’a’,’p’};

Read access to this array using an 8-bit unsigned index generates the assembly code:

E5*00 mov a,_index

90s00r41 mov dptr,#_test_array

93 movc a,@a+dptr

41

3.5. SDCC LANGUAGE EXTENSIONS CHAPTER 3. USING SDCC

3.5.1.6 __bit

This is a data-type and an address space. When a variable is declared as a bit, it is allocated into the bit addressable
memory of 8051, e.g.:

__bit test_bit;

Writing 1 to this variable generates the assembly code:

D2*00 setb _test_bit

The bit addressable memory consists of 128 bits which are located from 0x20 to 0x2f in data memory.
Apart from this 8051 specific intrinsic named address space most architectures support ANSI-C bit-fields3. In
accordance with ISO/IEC 9899 bits and bitfields without an explicit signed modifier are implemented as unsigned.

3.5.1.7 __sfr / __sfr16 / __sfr32 / __sbit

Like the __bit keyword, __sfr / __sfr16 / __sfr32 / __sbit signify both a data-type and named address space, they
are used to describe the special f unction registers and special __bit variables of a 8051, eg:

__sfr __at (0x80) P0; /* special function register P0 at location
0x80 */

/* 16 bit special function register combination for timer 0
with the high byte at location 0x8C and the low byte at location
0x8A */

__sfr16 __at (0x8C8A) TMR0;

__sbit __at (0xd7) CY; /* CY (Carry Flag) */

Special function registers which are located on an address dividable by 8 are bit-addressable, an __sbit addresses a
specific bit within these sfr.
16 Bit and 32 bit special function register combinations which require a certain access order are better not declared
using __sfr16 or __sfr32. Although SDCC usually accesses them Least Significant Byte (LSB) first, this is not
guaranteed.

Please note, if you use a header file which was written for another compiler then the __sfr / __sfr16 / __sfr32
/ __sbit intrinsic named address spaces will most likely be not compatible. Specifically the syntax sfr P0 =
0x80; is compiled without warning by SDCC to an assignment of 0x80 to a variable called P0. Nevertheless
with the file compiler.h it is possible to write header files which can be shared among different compilers
(see section 6.1).

3.5.1.8 Pointers to MCS51/DS390 intrinsic named address spaces

SDCC allows (via language extensions) pointers to explicitly point to any of the named address spaces of the 8051.
In addition to the explicit pointers, the compiler uses (by default) generic pointers which can be used to point to
any of the memory spaces.

Pointer declaration examples:

/* pointer physically in internal ram pointing to object in external
ram */

__xdata unsigned char * __data p;

/* pointer physically in external ram pointing to object in internal
ram */

__data unsigned char * __xdata p;

3Not really meant as examples, but nevertheless showing what bit-fields are about: device/include/mc68hc908qy.h and sup-
port/regression/tests/bitfields.c

42

3.5. SDCC LANGUAGE EXTENSIONS CHAPTER 3. USING SDCC

/* pointer physically in code rom pointing to data in xdata space

*/
__xdata unsigned char * __code p;

/* pointer physically in code space pointing to data in code space

*/
__code unsigned char * __code p;

/* generic pointer physically located in xdata space */
unsigned char * __xdata p;

/* generic pointer physically located in default memory space */
unsigned char * p;

/* the following is a function pointer physically located in data
space */

char (* __data fp)(void);

Well you get the idea.

All unqualified pointers are treated as 3-byte (4-byte for the ds390) generic pointers.

The highest order byte of the generic pointers contains the data space information. Assembler support rou-
tines are called whenever data is stored or retrieved using generic pointers. These are useful for developing
reusable library routines. Explicitly specifying the pointer type will generate the most efficient code.

3.5.1.9 Notes on MCS51 memory layout

The 8051 family of microcontrollers have a minimum of 128 bytes of internal RAM memory which is structured
as follows:

- Bytes 00-1F - 32 bytes to hold up to 4 banks of the registers R0 to R7,
- Bytes 20-2F - 16 bytes to hold 128 bit variables and,
- Bytes 30-7F - 80 bytes for general purpose use.

Additionally some members of the MCS51 family may have up to 128 bytes of additional, indirectly address-
able, internal RAM memory (__idata). Furthermore, some chips may have some built in external memory (__xdata)
which should not be confused with the internal, directly addressable RAM memory (__data). Sometimes this built
in __xdata memory has to be activated before using it (you can probably find this information on the datasheet of
the microcontroller your are using, see also section 4.1.4 Startup-Code).

Normally SDCC will only use the first bank of registers (register bank 0), but it is possible to specify that
other banks of registers (keyword __using) should be used for example in interrupt routines. By default, the
compiler will place the stack after the last byte of allocated memory for variables. For example, if the first
2 banks of registers are used, and only four bytes are used for data variables, it will position the base of the
internal stack at address 20 (0x14). This implies that as the stack grows, it will use up the remaining register
banks, and the 16 bytes used by the 128 bit variables, and 80 bytes for general purpose use. If any bit variables
are used, the data variables will be placed in unused register banks and after the byte holding the last bit
variable. For example, if register banks 0 and 1 are used, and there are 9 bit variables (two bytes used), data
variables will be placed starting from address 0x10 to 0x20 and continue at address 0x22. You can also use --data-
loc to specify the start address of the data and --iram-size to specify the size of the total internal RAM (data+idata).

By default the 8051 linker will place the stack after the last byte of (i)data variables. Option --stack-loc allows
you to specify the start of the stack, i.e. you could start it after any data in the general purpose area. If your
microcontroller has additional indirectly addressable internal RAM (idata) you can place the stack on it. You may
also need to use --xdata-loc to set the start address of the external RAM (xdata) and --xram-size to specify its size.
Same goes for the code memory, using --code-loc and --code-size. If in doubt, don’t specify any options and see if
the resulting memory layout is appropriate, then you can adjust it.

43

3.5. SDCC LANGUAGE EXTENSIONS CHAPTER 3. USING SDCC

The linker generates two files with memory allocation information. The first, with extension .map shows all the
variables and segments. The second with extension .mem shows the final memory layout. The linker will complain
either if memory segments overlap, there is not enough memory, or there is not enough space for stack. If you get
any linking warnings and/or errors related to stack or segments allocation, take a look at either the .map or .mem
files to find out what the problem is. The .mem file may even suggest a solution to the problem.

3.5.2 Z80/Z180/eZ80 intrinsic named address spaces
3.5.2.1 __sfr (in/out to 8-bit addresses)

The Z80 family has separate address spaces for memory and input/output memory. I/O memory is accessed with
special instructions, e.g.:

__sfr __at(0x78) IoPort; /* define a var in I/O space at 78h
called IoPort */

Writing 0x01 to this variable generates the assembly code:

3E 01 ld a,#0x01
D3 78 out (_IoPort),a

3.5.2.2 __banked __sfr (in/out to 16-bit addresses)

The keyword __banked is used to support 16 bit addresses in I/O memory e.g.:

__sfr __banked __at(0x123) IoPort;

Writing 0x01 to this variable generates the assembly code:

01 23 01 ld bc,#_IoPort
3E 01 ld a,#0x01
ED 79 out (c),a

3.5.2.3 __sfr (in0/out0 to 8 bit addresses on Z180/HD64180)

The compiler option --portmode=180 (80) and a compiler #pragma portmode z180 (z80) is used to turn on (off)
the Z180/HD64180 port addressing instructions in0/out0 instead of in/out. If you include the file z180.h this
will be set automatically.

3.5.3 SM83 intrinsic named address spaces
3.5.3.1 __sfr

The keyword __sfr is an alternative way to access memory locations 0xff00 to 0xffff, which are typically used for
memory-mapped I/O e.g.:

__sfr __at(0xff01) IoPort;

3.5.4 HC08/S08 intrinsic named address spaces
3.5.4.1 __data

Variables in the address space __data resides in the first 256 bytes of memory (the direct page). The HC08 is most
efficient at accessing variables (especially pointers) stored here.

3.5.4.2 __xdata

Variables in the address space__xdata can reside anywhere in memory. This is the default (generic address space).

44

3.5. SDCC LANGUAGE EXTENSIONS CHAPTER 3. USING SDCC

3.5.5 PDK14/PDK15 intrinsic named address spaces
3.5.5.1 __sfr

The Padauk family has separate address spaces for memory and input/output memory. I/O memory is accessed with
special instructions, e.g.:

__sfr __at(0x18) gpcc; /* define a var in I/O space at 18h called
gpcc */

3.5.5.2 __sfr16

The Padauk family has a 16-bit timer accessed with special instructions.

3.5.6 MOS6502 intrinsic named address spaces
3.5.6.1 __zp/__data /__near

Variables in the address space __zp reside in the first 256 bytes of memory (the Page Zero). The MOS6502 is most
efficient at accessing variables stored here. Pointers can only be dereferenced directly if they reside in Page Zero.
This is the default for the small memory model.

3.5.6.2 __xdata /__far

Variables in the address space __xdata can reside anywhere in the 64K memory space. This is the default (for the
large memory model).

3.5.7 Non-intrinsic named address spaces
SDCC supports user-defined non-intrinsic named address spaces. So far SDCC only supports them for bank-
switching. You need to have a function that switches to the desired memory bank and declare a corresponding
named address space:

void setb0(void); // The function that sets the currently active
memory bank to b0

void setb1(void); // The function that sets the currently active
memory bank to b1

__addressmod setb0 spaceb0; // Declare a named address space called
spaceb0 that uses setb0()

__addressmod setb1 spaceb1; // Declare a named address space called
spaceb1 that uses setb1()

spaceb0 int x; // An int in address space spaceb0
spaceb1 int *y; // A pointer to an int in address space spaceb1
spaceb0 int *spaceb1 z; // A pointer in address space spaceb1 that

points to an int in address space spaceb0

Non-intrinsic named address spaces for data in ROM are declared using the const keyword:

void setb0(void); // The function that sets the currently active
memory bank to b0

void setb1(void); // The function that sets the currently active
memory bank to b1

__addressmod setb0 const spaceb0; // Declare a named address space
called spaceb0 that uses setb0() and resides in ROM

__addressmod setb1 spaceb1; // Declare a named address space called
spaceb1 that uses setb1() and resides in RAM

const spaceb0 int x = 42; // An int in address space spaceb0
spaceb1 int *y; // A pointer to an int in address space spaceb1
const spaceb0 int *spaceb1 z; // A pointer in address space spaceb1

that points to a constant int in address space spaceb0

45

3.5. SDCC LANGUAGE EXTENSIONS CHAPTER 3. USING SDCC

Variables in non-intrinsic named address spaces will be placed in areas of the same name (this can be used for the
placement of named address spaces in memory by the linker).

SDCC will automatically insert calls to the corresponding function before accessing the variable. SDCC inserts
the minimum possible number calls to the bank selection functions. See Philipp Klaus Krause, ”Optimal Placement
of Bank Selection Instructions in Polynomial Time” for details on how this works.

3.5.8 Absolute Addressing
Data items can be assigned an absolute address with the __at <address> keyword (the address needs to be either a
parenthesized constant expression or a constant), which can also be used in addition to a named address space, e.g.:

__xdata unsigned int __at (0x7ffe) chksum;

In the above example the variable chksum will be located at 0x7ffe and 0x7fff of the external ram. The compiler
does not reserve any space for variables declared in this way (they are implemented with an equate in the assembler). !
Thus it is left to the programmer to make sure there are no overlaps with other variables that are declared without
the absolute address. The assembler listing file (.lst) and the linker output files (.rst) and (.map) are good places to
look for such overlaps.

If however you provide an initializer actual memory allocation will take place and overlaps will be detected by
the linker. E.g.:

__code char __at (0x7ff0) Id[5] = ”SDCC”;

In the above example the variable Id will be located from 0x7ff0 to 0x7ff4 in code memory.
In case of memory mapped I/O devices the keyword volatile has to be used to tell the compiler that accesses

might not be removed:

volatile __xdata unsigned char __at (0x8000) PORTA_8255;

For some architectures (mcs51) array accesses are more efficient if an (xdata/far) array starts at a block (256 byte)
boundary (section 3.11.2 has an example).
Absolute addresses can be specified for variables in all named address spaces, e.g.:

__bit __at (0x02) bvar;

The above example will allocate the variable at offset 0x02 in the bit-addressable space. There is no real advantage
to assigning absolute addresses to variables in this manner, unless you want strict control over all the variables
allocated. One possible use would be to write hardware portable code. For example, if you have a routine that uses
one or more of the microcontroller I/O pins, and such pins are different for two different hardwares, you can declare
the I/O pins in your routine using:

extern volatile __bit MOSI; /* master out, slave in */
extern volatile __bit MISO; /* master in, slave out */
extern volatile __bit MCLK; /* master clock */

/* Input and Output of a byte on a 3-wire serial bus.
If needed adapt polarity of clock, polarity of data and bit
order

*/
unsigned char spi_io(unsigned char out_byte)
{

unsigned char i=8;
do {

MOSI = out_byte & 0x80;
out_byte <<= 1;
MCLK = 1;
/* __asm nop __endasm; */ /* for slow peripherals */
if(MISO)

out_byte += 1;
MCLK = 0;

46

3.5. SDCC LANGUAGE EXTENSIONS CHAPTER 3. USING SDCC

} while(--i);
return out_byte;

}

Then, someplace in the code for the first hardware you would use

__bit __at (0x80) MOSI; /* I/O port 0, bit 0 */
__bit __at (0x81) MISO; /* I/O port 0, bit 1 */
__bit __at (0x82) MCLK; /* I/O port 0, bit 2 */

Similarly, for the second hardware you would use

__bit __at (0x83) MOSI; /* I/O port 0, bit 3 */
__bit __at (0x91) MISO; /* I/O port 1, bit 1 */
__bit __at (0x92) MCLK; /* I/O port 1, bit 2 */

and you can use the same hardware dependent routine without changes, as for example in a library. This is somehow
similar to sbit, but only one absolute address has to be specified in the whole project.

3.5.9 __sdcc_external_startup
When a function unsigned char __sdcc_external_startup(void) is present, it is executed before
both the initialization of static and global variables, as well as main. This allows to implement functionality that
needs to be done early. For example: disabling a hardware watchdog that would otherwise bite during the time it
takes to initialize global variables; setup or calibration of system/peripheral clocks; or, a memory check that needs
to be done before any memory (other than the return address for __sdcc_external_startup itself) is in use.

If this routine returns a non-zero value, the static and global variable initialization will be skipped and the
function main will be invoked. Otherwise static and global variables will be initialized before the function main
is invoked.

For mos6502, z80, z80n, z180, sm83, ez80_z80, tlcs90, r2k, r2ka, r3ka, when using a custom crt0, support
depends on the custom crt0.

3.5.10 Preserved register specification
SDCC allows to specify preserved registers in function declarations, to enable further optimizations on calls to
functions implemented in assembler. Example for the Z80 architecture specifying that a function will preserve
register pairs bc and iy:

void f(void) __preserves_regs(b, c, iyl, iyh);

3.5.11 Binary constants
SDCC supports the use of C23 binary constants, such as 0b01100010 when the compiler is invoked using
--std-sdccxx, even when the corresponding --std-cxx, does not. Note: xx is a placeholder for the de-
sired version of the C standard.

3.5.12 Returning void
SDCC allows functions to return expressions of type void. This feature is only enabled when the compiler is
invoked using --std-sdccxx. Note: xx is a placeholder for the desired version of the C standard.

3.5.13 Omitting promotion on arguments of vararg function (does not apply to pdk13,
pdk14, pdk15)

Arguments to vararg functions are not promoted when explicitly cast. This feature is only enabled when the com-
piler is invoked using --std-sdccxx. This breaks compability with the C standards, so linking code compiled
with --std-sdccxx with code compiled using --std-cxx can result in failing programs when arguments to
vararg functions are explicitly cast. Note: xx is a placeholder for the desired version of the C standard.

47

3.6. PARAMETERS AND LOCAL VARIABLES CHAPTER 3. USING SDCC

3.6 Parameters and Local Variables
Automatic (local) variables and parameters to functions are placed on the stack for most targets. For
MCS51/DS390/HC08/S08/PDK13/PDK14/PDK15 they can either be placed on the stack or in data-space.
The default action of the compiler is to place these variables in the internal RAM (for small model) or external
RAM (for medium or large model). This in fact makes them similar to static so by default functions are
non-reentrant.

They can be placed on the stack by using the --stack-auto option, by using #pragma stackauto or by using
the __reentrant keyword in the function declaration, e.g.:

unsigned char foo(char i) __reentrant
{

...
}

Since stack space on 8051 is limited, and accessing the stack is slow for the Padauk, the __reentrant keyword or
the --stack-auto option should be used sparingly. Note that the __reentrant keyword just means that the parameters
& local variables will be allocated to the stack, it does not mean that the function is register bank independent.

Local variables can be assigned intrinsic named address spaces and absolute addresses, e.g.:

unsigned char foo(__xdata int parm)
{

__xdata unsigned char i;
__bit bvar;
__data unsigned char __at (0x31) j;
...

}

In the above example the parameter parm and the variable i will be allocated in the external ram, bvar in bit ad-
dressable space and j in internal ram. When compiled with --stack-auto or when a function is declared as reentrant
this should only be done for static variables.

It is however allowed to use bit parameters in reentrant functions and also non-static local bit variables are
supported. Efficient use is limited to 8 semi-bitregisters in bit space. They are pushed and popped to stack as a
single byte just like the normal registers.

3.7 Overlaying
For non-reentrant functions SDCC will try to reduce internal ram space usage by overlaying parameters and local
variables of a function (if possible). Parameters and local variables of a function will be allocated to an overlayable
segment if the function has no other function calls and the function is non-reentrant and the memory model is small.
If an explicit intrinsic named address space is specified for a local variable, it will NOT be overlaid.

Note that the compiler (not the linkage editor) makes the decision for overlaying the data items. Functions that
are called from an interrupt service routine should be preceded by a #pragma nooverlay if they are not reentrant. !

Also note that the compiler does not do any processing of inline assembler code, so the compiler might incor-
rectly assign local variables and parameters of a function into the overlay segment if the inline assembler code calls
other c-functions that might use the overlay. In that case the #pragma nooverlay should be used.

Parameters and local variables of functions that contain 16 or 32 bit multiplication or division will NOT be
overlaid since these are implemented using external functions, e.g.:

#pragma save
#pragma nooverlay
void set_error(unsigned char errcd)
{

P3 = errcd;
}
#pragma restore

48

3.8. INTERRUPT SERVICE ROUTINES CHAPTER 3. USING SDCC

void some_isr () __interrupt (2)
{

...
set_error(10);
...

}

In the above example the parameter errcd for the function set_error would be assigned to the overlayable segment
if the #pragma nooverlay was not present, this could cause unpredictable runtime behaviour when called from an
interrupt service routine. The #pragma nooverlay ensures that the parameters and local variables for the function
are NOT overlaid.

3.8 Interrupt Service Routines

3.8.1 General Information
SDCC allows interrupt service routines to be coded in C, with some extended keywords.

void timer_isr (void) __interrupt (1) __using (1)
{

...
}

The optional number following the __interrupt keyword is the interrupt number this routine will service. When
present, the compiler will insert a call to this routine in the interrupt vector table for the interrupt number specified.
If you have multiple source files in your project, interrupt service routines can be present in any of them, but a
prototype of the isr MUST be present or included in the file that contains the function main. The optional (8051
specific) keyword __using can be used to tell the compiler to use the specified register bank when generating code
for this function.
Interrupt service routines open the door for some very interesting bugs:

3.8.1.1 Common interrupt pitfall: variable not declared volatile

If an interrupt service routine changes variables which are accessed by other functions these variables have to be
declared volatile. See http://en.wikipedia.org/wiki/Volatile_variable.

3.8.1.2 Common interrupt pitfall: non-atomic access

If the access to these variables is not atomic (i.e. the processor needs more than one instruction for the access
and could be interrupted while accessing the variable) the interrupt must be disabled during the access to avoid
inconsistent data.
Access to 16 or 32 bit variables is obviously not atomic on 8 bit CPUs and should be protected by disabling
interrupts. You’re not automatically on the safe side if you use 8 bit variables though. We need an example here:
f.e. on the 8051 the harmless looking ”flags |= 0x80;” is not atomic if flags resides in xdata. Setting
”flags |= 0x40;” from within an interrupt routine might get lost if the interrupt occurs at the wrong time.
”counter += 8;” is not atomic on the 8051 even if counter is located in data memory.
Bugs like these are hard to reproduce and can cause a lot of trouble.

3.8.1.3 Common interrupt pitfall: stack overflow

The return address and the registers used in the interrupt service routine are saved on the stack so there must be
sufficient stack space. If there isn’t variables or registers (or even the return address itself) will be corrupted. This
stack overflow is most likely to happen if the interrupt occurs during the ”deepest” subroutine when the stack is
already in use for f.e. many return addresses.

49

http://en.wikipedia.org/wiki/Volatile_variable

3.8. INTERRUPT SERVICE ROUTINES CHAPTER 3. USING SDCC

3.8.1.4 Common interrupt pitfall: use of non-reentrant functions

A special note here, integer multiplicative operators and floating-point operations might be implemented using
external support routines, depending on the target architecture. If an interrupt service routine needs to do any of
these operations on a target where functions are non-reentrant by default, then the support routines (as mentioned
in a following section) will have to be recompiled using the --stack-auto option and the source file will need to be
compiled using the --int-long-reent compiler option.
Note, the type promotion required by ANSI C can cause 16 bit routines to be used without the programmer being !
aware of it. See f.e. the cast (unsigned char)(tail-1) within the if clause in section 3.11.2.

Calling other functions from an interrupt service routine on a target where functions are non-reentrant by default
is not recommended, avoid it if possible. Note that when some function is called from an interrupt service routine
it should be preceded by a #pragma nooverlay if it is not reentrant. Furthermore non-reentrant functions should
not be called from the main program while the interrupt service routine might be active. They also must not be
called from low priority interrupt service routines while a high priority interrupt service routine might be active.
You could use semaphores or make the function critical if all parameters are passed in registers.
Also see section 3.7 about Overlaying and section 3.10 about Functions using private register banks.

3.8.2 MCS51/DS390 Interrupt Service Routines
Interrupt numbers and the corresponding address & descriptions for the Standard 8051/8052 are listed below.
SDCC will automatically adjust the to the maximum interrupt number specified.

Interrupt # Description Vector Address
0 External 0 0x0003
1 Timer 0 0x000b
2 External 1 0x0013
3 Timer 1 0x001b
4 Serial 0x0023
5 Timer 2 (8052) 0x002b
... ...
n 0x0003 + 8*n

If the interrupt service routine is defined without __using a register bank or with register bank 0 (__using (0)),
the compiler will save the registers used by itself on the stack upon entry and restore them at exit, however if such
an interrupt service routine calls another function then the entire register bank will be saved on the stack. This
scheme may be advantageous for small interrupt service routines which have low register usage.

If the interrupt service routine is defined to be using a specific register bank then only a, b, dptr & psw are saved
and restored, if such an interrupt service routine calls another function (using another register bank) then the entire
register bank of the called function will be saved on the stack. This scheme is recommended for larger interrupt
service routines.

3.8.3 HC08 Interrupt Service Routines
Since the number of interrupts available is chip specific and the interrupt vector table always ends at the last byte
of memory, the interrupt numbers corresponds to the interrupt vectors in reverse order of address. For example,
interrupt 1 will use the interrupt vector at 0xfffc, interrupt 2 will use the interrupt vector at 0xfffa, and so on.
However, interrupt 0 (the reset vector at 0xfffe) is not redefinable in this way; instead see section 4.1.4 for details
on customizing startup.

3.8.4 Z80, Z180 and eZ80 Interrupt Service Routines
The Z80 uses several different methods for determining the correct interrupt vector depending on the hardware
implementation. Therefore, SDCC does not attempt to generate an interrupt vector table.

By default, SDCC generates code for a maskable interrupt, which uses a RETI instruction to return from the
interrupt. To write an interrupt handler for the non-maskable interrupt, which needs a RETN instruction instead,
leave out the interrupt number:

50

3.9. ENABLING AND DISABLING INTERRUPTS CHAPTER 3. USING SDCC

void nmi_isr (void) __critical __interrupt
{

...
}

Since interrupts on the Z80 and Z180 are level-triggered (except for the NMI), interruptible interrupt handlers
should only be used where hardware acknowledge is available.

Type Syntax Behaviour
Interruptible interrupt handler void f(void) __interrupt Interrupt handler can be

interrupted by further interrupts
Non-interruptible interrupt handler void f(void) __critical __interrupt(0) Interrupt handler can be

interrupted by NMI only
NMI handler void f(void) __critical __interrupt Interrupt handler can be

interrupted by NMI only

3.8.5 Rabbit 2000, 3000 and 3000A Interrupt Service Routines
SDCC does not attempt to generate an interrupt vector table.

Type Syntax Behaviour
Interruptible interrupt handler void f(void) __interrupt Interrupt handler can be

interrupted by further interrupts of
same priority

Non-interruptible interrupt handler void f(void) __critical __interrupt(0) Interrupt handler can be
interrupted by interrupts of higher
priority only

3.8.6 SM83 and TLCS-90 Interrupt Service Routines
SDCC does not attempt to generate an interrupt vector table.

Type Syntax Behaviour
Interruptible interrupt handler void f(void) __interrupt Interrupt handler can be

interrupted by further interrupts
Non-interruptible interrupt handler void f(void) __critical __interrupt(0) Interrupt handler cannot be

interrupted by further interrupts

3.8.7 STM8 Interrupt Service Routines
The STM8 interrupt table contains 31 entries: Reset (used by SDCC for program startup), trap and user interrupts
0 to 29. Where the keyword __interrupt is used for normal user interrupts, the __trap keyword is used for the trap
handler:

void handler (void) __trap
{

...
}

3.9 Enabling and Disabling Interrupts

3.9.1 Critical Functions and Critical Statements
A special keyword may be associated with a block or a function declaring it as __critical. SDCC will generate
code to disable all interrupts upon entry to a critical function and restore the interrupt enable to the previous state
before returning (for architectures where there is no efficient way to do so (sm83, tlcs90, stm8), interrupts will be
unconditionally enabled instead). Nesting critical functions will need one additional byte on the stack for each call.

int foo () __critical
{

51

3.9. ENABLING AND DISABLING INTERRUPTS CHAPTER 3. USING SDCC

...

...
}

The critical attribute maybe used with other attributes like reentrant.
The keyword __critical may also be used to disable interrupts more locally:

__critical{ i++; }

More than one statement could have been included in the block.

3.9.2 Enabling and Disabling Interrupts directly
Interrupts can also be disabled and enabled directly (8051):

EA = 0; or: EA_SAVE = EA;

... EA = 0;

EA = 1; ...

EA = EA_SAVE;

On other architectures which have separate opcodes for enabling and disabling interrupts you might want to make
use of defines with inline assembly (HC08):

#define CLI __asm cli __endasm;

#define SEI __asm sei __endasm;

or for SDCC version 3.2.0 or newer:

#define CLI __asm__ (”cli”);

#define SEI __asm__ (”sei”);

Note: it is sometimes sufficient to disable only a specific interrupt source like f.e. a timer or serial interrupt by
manipulating an interrupt mask register.

Usually the time during which interrupts are disabled should be kept as short as possible. This minimizes both
interrupt latency (the time between the occurrence of the interrupt and the execution of the first code in the interrupt
routine) and interrupt jitter (the difference between the shortest and the longest interrupt latency). These really are
something different, f.e. a serial interrupt has to be served before its buffer overruns so it cares for the maximum
interrupt latency, whereas it does not care about jitter. On a loudspeaker driven via a digital to analog converter
which is fed by an interrupt a latency of a few milliseconds might be tolerable, whereas a much smaller jitter will
be very audible.

You can re-enable interrupts within an interrupt routine and on some architectures you can make use of two
(or more) levels of interrupt priorities. On some architectures which don’t support interrupt priorities these can
be implemented by manipulating the interrupt mask and re-enabling interrupts within the interrupt routine. Check
there is sufficient space on the stack and don’t add complexity unless you have to.

3.9.3 Semaphore locking (mcs51/ds390)
Some architectures (mcs51/ds390) have an atomic bit test and clear instruction. These type of instructions are
typically used in preemptive multitasking systems, where a routine f.e. claims the use of a data structure (’acquires
a lock on it’), makes some modifications and then releases the lock when the data structure is consistent again. The
instruction may also be used if interrupt and non-interrupt code have to compete for a resource. With the atomic bit
test and clear instruction interrupts don’t have to be disabled for the locking operation.

SDCC generates this instruction if the source follows this pattern:

volatile bit resource_is_free;

if (resource_is_free)
{

resource_is_free=0;
...
resource_is_free=1;

}

52

3.10. FUNCTIONS USING PRIVATE REGISTER BANKS (MCS51/DS390) CHAPTER 3. USING SDCC

Note, mcs51 and ds390 support only an atomic bit test and clear instruction (as opposed to atomic bit test and set).

3.10 Functions using private register banks (mcs51/ds390)
Some architectures have support for quickly changing register sets. SDCC supports this feature with the __using
attribute (which tells the compiler to use a register bank other than the default bank zero). It should only be applied
to interrupt functions (see footnote below). This will in most circumstances make the generated ISR code more
efficient since it will not have to save registers on the stack.

The __using attribute will have no effect on the generated code for a non-interrupt function (but may occasion-
ally be useful anyway4).
(pending: Note, nowadays the __using attribute has an effect on the generated code for a non-interrupt function.)

An interrupt function using a non-zero bank will assume that it can trash that register bank, and will not save
it. Since high-priority interrupts can interrupt low-priority ones on the 8051 and friends, this means that if a high-
priority ISR using a particular bank occurs while processing a low-priority ISR using the same bank, terrible and
bad things can happen. To prevent this, no single register bank should be used by both a high priority and a low
priority ISR. This is probably most easily done by having all high priority ISRs use one bank and all low priority
ISRs use another. If you have an ISR which can change priority at runtime, you’re on your own: I suggest using
the default bank zero and taking the small performance hit.

It is most efficient if your ISR calls no other functions. If your ISR must call other functions, it is most efficient
if those functions use the same bank as the ISR (see note 1 below); the next best is if the called functions use bank
zero. It is very inefficient to call a function using a different, non-zero bank from an ISR.

3.11 Inline Assembler Code

3.11.1 Inline Assembler Code Formats
SDCC supports two formats for inline assembler code definition:

3.11.1.1 Old __asm ... __endasm; Format

Most of inline assembler code examples in this manual use the old inline assembler code format, but the new format
could be used equivalently.

Example:

__asm
; This is a comment
label:

nop
__endasm;

Note: As of SDCC 4.2.9, assembler comments occurring in this type of inline assembler block are affected by
macro expansion.

3.11.1.2 New __asm__ (”inline_assembler_code”) Format

The __asm__ inline assembler code format was introduced in SDCC version 3.2.0. Its main advantage is that it is
compatible with all standard compliant C preprocessors.

Example:

__asm__ (”; This is a comment\nlabel:\n\tnop”);

Or for better readability:

4possible exception: if a function is called ONLY from ’interrupt’ functions using a particular bank, it can be declared with the same ’using’
attribute as the calling ’interrupt’ functions. For instance, if you have several ISRs using bank one, and all of them call memcpy(), it might make
sense to create a specialized version of memcpy() ’using 1’, since this would prevent the ISR from having to save bank zero to the stack on entry
and switch to bank zero before calling the function

53

3.11. INLINE ASSEMBLER CODE CHAPTER 3. USING SDCC

__asm__ (

”; This is a comment\n”

”label:\n”

” nop”

);

3.11.2 A Step by Step Introduction
Starting from a small snippet of c-code this example shows for the MCS51 how to use inline assembly, access
variables, a function parameter and an array in xdata memory. The example uses an MCS51 here but is easily
adapted for other architectures. This is a buffer routine which should be optimized:

unsigned char __far __at(0x7f00) buf[0x100];

unsigned char head, tail; /* if interrupts are involved see

section 3.8.1.1 about volatile */

void to_buffer(unsigned char c)

{

if(head != (unsigned char)(tail-1)) /* cast needed to avoid promotion to integer

*/ !
buf[head++] = c; /* access to a 256 byte aligned array */

}

If the code snippet (assume it is saved in buffer.c) is compiled with SDCC then a corresponding buffer.asm file is
generated. We define a new function to_buffer_asm() in file buffer.c in which we cut and paste the generated
code, removing unwanted comments and some ’:’. Then add ”__asm” and ”__endasm;”5 to the beginning and the
end of the function body:

/* With a cut and paste from the .asm file, we have something to start with.

The function is not yet OK! (registers aren’t saved) */

void to_buffer_asm(unsigned char c)

{

__asm

mov r2,dpl

;buffer.c if(head != (unsigned char)(tail-1)) /* cast needed to avoid promotion to

integer */

mov a,_tail

dec a

mov r3,a

mov a,_head

cjne a,ar3,00106$

ret

00106$:

;buffer.c buf[head++] = c; /* access to a 256 byte aligned array */

mov r3,_head

inc _head

mov dpl,r3

mov dph,#(_buf >> 8)

mov a,r2

movx @dptr,a

00103$:

ret

__endasm;
}

5Note, that the single underscore form (_asm and _endasm) are not C99 compatible, and for C99 compatibility, the double-underscore form
(__asm and __endasm) has to be used. The latter is also used in the library functions.

54

3.11. INLINE ASSEMBLER CODE CHAPTER 3. USING SDCC

The new file buffer.c should compile with only one warning about the unreferenced function argument ’c’. Now
we hand-optimize the assembly code and insert an #define USE_ASSEMBLY (1) and finally have:

unsigned char __far __at(0x7f00) buf[0x100];

unsigned char head, tail;

#define USE_ASSEMBLY (1)

#if !USE_ASSEMBLY

void to_buffer(unsigned char c)

{

if(head != (unsigned char)(tail-1))

buf[head++] = c;

}

#else

void to_buffer(unsigned char c)

{

c; // to avoid warning: unreferenced function argument

__asm

; save used registers here.

; If we were still using r2,r3 we would have to push them here.

; if(head != (unsigned char)(tail-1))

mov a,_tail

dec a

xrl a,_head

; we could do an ANL a,#0x0f here to use a smaller buffer (see below)

jz t_b_end$

;

; buf[head++] = c;

mov a,dpl ; dpl holds lower byte of function argument

mov dpl,_head ; buf is 0x100 byte aligned so head can be used directly

mov dph,#(_buf>>8)

movx @dptr,a

inc _head

; we could do an ANL _head,#0x0f here to use a smaller buffer (see above)

t_b_end$:

; restore used registers here

__endasm;

}
#endif

The inline assembler code can contain any valid code understood by the assembler, this includes any assembler
directives and comment lines. The assembler does not like some characters like ’:’ or ”’ in comments. You’ll
find an 100+ pages assembler manual in sdcc/sdas/doc/asmlnk.txt or online at http://svn.code.sf.net/
p/sdcc/code/trunk/sdcc/sdas/doc/asmlnk.txt.

The compiler does not do any validation of the code within the __asm ... __endasm; keyword pair.
Specifically it will not know which registers are used and thus register pushing/popping has to be done manually.

It is required that each assembly instruction be placed on a separate line. This is also recommended for labels (as
the example shows). This is especially important to note when the inline assembler is placed in a C preprocessor
macro as the preprocessor will normally put all replacing code on a single line. Only when the macro has each
assembly instruction on a single line that ends with a line continuation character will it be placed as separate lines
in the resulting .asm file.

#define DELAY \

__asm \

nop \

55

http://svn.code.sf.net/p/sdcc/code/trunk/sdcc/sdas/doc/asmlnk.txt
http://svn.code.sf.net/p/sdcc/code/trunk/sdcc/sdas/doc/asmlnk.txt

3.11. INLINE ASSEMBLER CODE CHAPTER 3. USING SDCC

nop \
__endasm

When the --peep-asm command line option is used, the inline assembler code will be passed through the peephole
optimizer. There are only a few (if any) cases where this option makes sense, it might cause some unexpected
changes in the inline assembler code. Please go through the peephole optimizer rules defined in file peeph.def
before using this option.

3.11.3 Naked Functions
A special keyword may be associated with a function declaring it as __naked. The _naked function modifier
attribute prevents the compiler from generating prologue and epilogue code for that function. This means that the
user is entirely responsible for such things as saving any registers that may need to be preserved, selecting the
proper register bank, generating the return instruction at the end, etc. Practically, this means that the contents of the
function must be written in inline assembler. This is particularly useful for interrupt functions, which can have a
large (and often unnecessary) prologue/epilogue. For example, compare the code generated by these two functions:

volatile __data unsigned char counter;

void simpleInterrupt(void) __interrupt (1)
{

counter++;
}

void nakedInterrupt(void) __interrupt (2) __naked
{

__asm
inc _counter ; does not change flags, no need to save psw
reti ; MUST explicitly include ret or reti in _naked

function.
__endasm;

}

For an 8051 target, the generated simpleInterrupt looks like:

Note, this is an outdated example, recent versions of SDCC generate
the same code for simpleInterrupt() and nakedInterrupt()!

_simpleInterrupt:
push acc
push b
push dpl
push dph
push psw
mov psw,#0x00
inc _counter
pop psw
pop dph
pop dpl
pop b
pop acc
reti

whereas nakedInterrupt looks like:

_nakedInterrupt:
inc _counter ; does not change flags, no need to save psw
reti ; MUST explicitly include ret or reti in _naked

function

56

3.12. SUPPORT ROUTINES FOR INTEGER MULTIPLICATIVE OPERATORS CHAPTER 3. USING SDCC

The related directive #pragma exclude allows a more fine grained control over pushing & popping the registers.
While there is nothing preventing you from writing C code inside a _naked function, there are many ways to

shoot yourself in the foot doing this, and it is recommended that you stick to inline assembler.

3.11.4 Use of Labels within Inline Assembler
SDCC allows the use of in-line assembler with a few restrictions regarding labels. All labels defined within inline
assembler code have to be of the form nnnnn$ where nnnnn is a number less than 100 (which implies a limit of
utmost 100 inline assembler labels per function).6

__asm
mov b,#10

00001$:
djnz b,00001$

__endasm ;

Inline assembler code cannot reference any C-labels, however it can reference labels defined by the inline assembler,
e.g.:

foo() {
/* some c code */
__asm

; some assembler code
ljmp 0003$

__endasm;
/* some more c code */

clabel: /* inline assembler cannot reference this label */
7

__asm
0003$: ;label (can be referenced by inline assembler only)
__endasm ;
/* some more c code */

}

In other words inline assembly code can access labels defined in inline assembly within the scope of the function.
The same goes the other way, i.e. labels defines in inline assembly can not be accessed by C statements.

3.12 Support routines for integer multiplicative operators
Depending on the target architecture, some integer multiplicative operators might be implemented by support
routines. These support routines exist in portable C versions to facilitate porting to other MCUs, although
depending on the target, assembler routines might be used instead. The following files contain some of the
described routines, all of them can be found in <installdir>/share/sdcc/lib.

6This is a slightly more stringent rule than absolutely necessary, but stays always on the safe side. Labels in the form of nnnnn$ are local
labels in the assembler, locality of which is confined within two labels of the standard form. The compiler uses the same form for labels within
a function (but starting from nnnnn=00100); and places always a standard label at the beginning of a function, thus limiting the locality of labels
within the scope of the function. So, if the inline assembler part would be embedded into C-code, an improperly placed non-local label in the
assembler would break up the reference space for labels created by the compiler for the C-code, leading to an assembling error.

The numeric part of local labels does not need to have 5 digits (although this is the form of labels output by the compiler), any valid integer
will do. Please refer to the assemblers documentation for further details.

7Here, the C-label clabel is translated by the compiler into a local label, so the locality of labels within the function is not broken.

57

3.13. FLOATING POINT SUPPORT CHAPTER 3. USING SDCC

Function Description
_mulint.c 16 bit multiplication
_divsint.c signed 16 bit division (calls _divuint)
_divuint.c unsigned 16 bit division
_modsint.c signed 16 bit modulus (calls _moduint)
_moduint.c unsigned 16 bit modulus
_mullong.c 32 bit multiplication
_divslong.c signed 32 division (calls _divulong)
_divulong.c unsigned 32 division
_modslong.c signed 32 bit modulus (calls _modulong)
_modulong.c unsigned 32 bit modulus

In the mcs51, ds390, hc08, s08, pdk13, pdk14, pdk15, pic14 and pic16 backends they are by default compiled
as non-reentrant; when targeting on of these architectures, interrupt service routines should not do any of the above
operations. If this is unavoidable then the above routines will need to be compiled with the --stack-auto option,
after which the source program will have to be compiled with --int-long-reent option. Notice that you don’t have to
call these routines directly. The compiler will use them automatically every time an integer operation is required.

3.13 Floating Point Support
SDCC supports (single precision 4 bytes) floating point numbers; the format is somewhat similar to IEEE, but
it is not IEEE; in particular, denormalized floating -point numbers are not supported. The floating point support
routines are derived from gcc’s floatlib.c and consist of the following routines:

Function Description
_fsadd.c add floating point numbers
_fssub.c subtract floating point numbers
_fsdiv.c divide floating point numbers
_fsmul.c multiply floating point numbers
_fs2uchar.c convert floating point to unsigned char
_fs2schar.c convert floating point to signed char
_fs2uint.c convert floating point to unsigned int
_fs2sint.c convert floating point to signed int
_fs2ulong.c convert floating point to unsigned long
_fs2slong.c convert floating point to signed long
_uchar2fs.c convert unsigned char to floating point
_schar2fs.c convert signed char to floating point
_uint2fs.c convert unsigned int to floating point
_sint2fs.c convert signed int to floating point
_ulong2fs.c convert unsigned long to floating point
_slong2fs.c convert signed long to floating point
_ulonglong2fs.c convert unsigned long long to floating point
_slonglong2fs.c convert singed long long to floating point

3.14 Library Routines
<pending: this is messy and incomplete - a little more information is at http://sdcc.sourceforge.net/
wiki/index.php/List_of_the_SDCC_library>

58

http://sdcc.sourceforge.net/wiki/index.php/List_of_the_SDCC_library
http://sdcc.sourceforge.net/wiki/index.php/List_of_the_SDCC_library

3.14. LIBRARY ROUTINES CHAPTER 3. USING SDCC

3.14.1 Compiler support routines (_gptrget, _mulint etc.)

3.14.2 Stdclib functions (puts, printf, strcat etc.)
3.14.2.1 <stdio.h>

getchar(), putchar() As usual on embedded systems you have to provide your own getchar() and
putchar() routines. SDCC does not know whether the system connects to a serial line with or without
handshake, LCD, keyboard or other device. And whether a lf to crlf conversion within putchar() is
intended. You’ll find examples for serial routines f.e. in sdcc/device/lib. For the mcs51 this minimalistic polling
putchar() routine might be a start:

int putchar (int c) {
while (!TI) /* assumes UART is initialized */

;
TI = 0;
SBUF = c;

return c;

}

printf() The default printf() implementation in printf_large.c does not support float (except on
ds390), only <NO FLOAT> will be printed instead of the value. To enable floating point output, recompile it
with the option -DUSE_FLOATS=1 on the command line. Use --model-large for the mcs51 port, since this uses a
lot of memory. To enable float support for the pic16 targets, see 4.7.9.

If you’re short on code memory you might want to use printf_small() instead of printf(). For the
mcs51 there additionally are assembly versions printf_tiny() (subset of printf using less than 270 bytes)
and printf_fast() and printf_fast_f() (floating-point aware version of printf_fast) which should fit
the requirements of many embedded systems (printf_fast() can be customized by unsetting #defines to not support
long variables and field widths). Be sure to use only one of these printf options within a project.

Feature matrix of different printf options on mcs51.

mcs51 printf printf
USE_FLOATS=1

printf_small printf_fast printf_fast_f printf_tiny

filename printf_large.c printf_large.c printfl.c printf_fast.c printf_fast_f.c printf_tiny.c

”Hello World”
size
small / large

1.7k / 2.4k 4.3k / 5.6k 1.2k / 1.8k 1.3k / 1.3k 1.9k / 1.9k 0.44k / 0.44k

code size
small / large 1.4k / 2.0k 2.8k / 3.7k 0.45k /

0.47k (+
_ltoa)

1.2k / 1.2k 1.6k / 1.6k 0.26k / 0.26k

formats cdiopsux cdfiopsux cdosx cdsux cdfsux cdsux
long (32 bit)
support x x x x x -

byte arguments
on stack b b - - - -

float format - %f - - %f8 -
float formats
%e %g - - - - - -

field width x x - x x -
string speed9,
small / large

1.52 / 2.59 ms 1.53 / 2.62
ms

0.92 / 0.93
ms

0.45 / 0.45 ms 0.46 / 0.46
ms

0.45 / 0.45 ms

8Range limited to +/- 4294967040, precision limited to 8 digits past decimal
9Execution time of printf("%s%c%s%c%c%c", "Hello", ’ ’, "World", ’!’, ’\r’, ’\n’); standard 8051 @ 22.1184 MHz, empty putchar()

59

3.14. LIBRARY ROUTINES CHAPTER 3. USING SDCC

mcs51 printf printf
USE_FLOATS=1

printf_small printf_fast printf_fast_f printf_tiny

filename printf_large.c printf_large.c printfl.c printf_fast.c printf_fast_f.c printf_tiny.c

”Hello World”
size
small / large

1.7k / 2.4k 4.3k / 5.6k 1.2k / 1.8k 1.3k / 1.3k 1.9k / 1.9k 0.44k / 0.44k

code size
small / large 1.4k / 2.0k 2.8k / 3.7k 0.45k /

0.47k (+
_ltoa)

1.2k / 1.2k 1.6k / 1.6k 0.26k / 0.26k

int speed10,
small / large

3.01 / 3.61 ms 3.01 / 3.61
ms

3.51 /
18.13 ms

0.22 / 0.22 ms 0.23 / 0.23
ms

0.25 / 0.25 ms11

long speed12,
small / large

5.37 / 6.31 ms 5.37 / 6.31
ms

8.71 /
40.65 ms

0.40 / 0.40 ms 0.40 / 0.40
ms

-

float speed13,
small / large

- 7.49 / 22.47
ms

- - 1.04 / 1.04
ms

-

3.14.2.2 <malloc.h>

As of SDCC 2.6.2 you no longer need to call an initialization routine before using dynamic memory allocation and
a default heap space of 1024 bytes is provided for malloc to allocate memory from. If you need a different heap
size you need to recompile _heap.c with the required size defined in HEAP_SIZE. It is recommended to make a
copy of this file into your project directory and compile it there with:

sdcc -c _heap.c -D HEAP_SIZE=2048

And then link it with:

sdcc main.rel _heap.rel

3.14.3 Math functions (sinf, powf, sqrtf etc.)
3.14.3.1 <math.h>

See definitions in file <math.h>.

3.14.4 Other libraries
Libraries included in SDCC should have a license at least as liberal as the GPLv2+LE. Exception are pic device
libraries and header files which are derived from Microchip header (.inc) and linker script (.lkr) files. Microchip
requires that "The header files should state that they are only to be used with authentic Microchip devices" which
makes them incompatible with GPL.

If you have ported some library or want to share experience about some code which f.e. falls into any of
these categories Busses (I2C, CAN, Ethernet, Profibus, Modbus, USB, SPI, JTAG ...), Media (IDE, Memory cards,
eeprom, flash...), En-/Decryption, Remote debugging, Realtime kernel, Keyboard, LCD, RTC, FPGA, PID then the
sdcc-user mailing list http://sourceforge.net/p/sdcc/mailman/sdcc-user/ would certainly like
to hear about it.

Programmers coding for embedded systems are not especially famous for being enthusiastic, so don’t expect
a big hurray but as the mailing list is searchable these references are very valuable. Let’s help to create a climate
where information is shared.

10Execution time of printf("%d", -12345); standard 8051 @ 22.1184 MHz, empty putchar()
11printf_tiny integer speed is data dependent, worst case is 0.33 ms
12Execution time of printf("%ld", -123456789); standard 8051 @ 22.1184 MHz, empty putchar()
13Execution time of printf("%.3f", -12345.678); standard 8051 @ 22.1184 MHz, empty putchar()

60

http://sourceforge.net/p/sdcc/mailman/sdcc-user/

3.15. MEMORY MODELS CHAPTER 3. USING SDCC

3.15 Memory Models

3.15.1 MCS51 Memory Models
3.15.1.1 Small, Medium, Large and Huge

SDCC allows four memory models for MCS51 code, small, medium, large and huge. Modules compiled with
different memory models should never be combined together or the results would be unpredictable. The library
routines supplied with the compiler are compiled for all models (however, the libraries for –stack-auto are compiled
for the small and large models only). The compiled library modules are contained in separate directories as small,
medium, large and huge so that you can link to the appropriate set.

When the medium, large or huge model is used all variables declared without specifying an intrinsic named
address space will be allocated into the external ram, this includes all parameters and local variables (for non-
reentrant functions). Medium model uses pdata and large and huge models use xdata. When the small model is
used variables without an explicitly specified intrinsic named address space are allocated in the internal ram.

The huge model compiles all functions as banked4.1.3 and is otherwise equal to large for now. All other models
compile the functions without bankswitching by default.

Judicious usage of the processor specific intrinsic named address spaces and the ’reentrant’ function type will
yield much more efficient code, than using the large model. Several optimizations are disabled when the program
is compiled using the large model, it is therefore recommended that the small model be used unless absolutely
required.

3.15.1.2 External Stack

The external stack (--xstack option) is located in pdata memory (usually at the start of the external ram segment)
and uses all unused space in pdata (max. 256 bytes). When --xstack option is used to compile the program, the
parameters and local variables of all reentrant functions are allocated in this area. This option is provided for
programs with large stack space requirements. When used with the --stack-auto option, all parameters and local
variables are allocated on the external stack (note: support libraries will need to be recompiled with the same
options. There is a predefined target in the library makefile).

The compiler outputs the higher order address byte of the external ram segment into port P2 (see also section
4.1), therefore when using the External Stack option, this port may not be used by the application program.

3.15.2 DS390 Memory Model
The only model supported is Flat 24. This generates code for the 24 bit contiguous addressing mode of the Dallas
DS80C390 part. In this mode, up to four meg of external RAM or code space can be directly addressed. See the
data sheets at www.dalsemi.com for further information on this part.

Note that the compiler does not generate any code to place the processor into 24 bit mode (although tinibios in the
ds390 libraries will do that for you). If you don’t use tinibios, the boot loader or similar code must ensure that the
processor is in 24 bit contiguous addressing mode before calling the SDCC startup code.

Like the --model-large option, variables will by default be placed into the XDATA segment.

Segments may be placed anywhere in the 4 meg address space using the usual --*-loc options. Note that if
any segments are located above 64K, the -r flag must be passed to the linker to generate the proper segment
relocations, and the Intel HEX output format must be used. The -r flag can be passed to the linker by using the
option -Wl-r on the SDCC command line. However, currently the linker can not handle code segments > 64k.

3.15.3 STM8 Memory Models
SDCC implements two memory models for the STM8: medium (default) and large. Modules compiled with dif-
ferent memory models should never be combined together. The library routines supplied with the compiler are
compiled for all models.

In the medium model the address space is 16 bits for both objects and functions, allowing for a memory space
of 64 KB. Since the STM8 typically has Flash starting at 0x8000, this means that only up to 32 KB of Flash can be
used (most STM8 devices don’t have more than 32 KB of Flash).

61

3.16. PRAGMAS CHAPTER 3. USING SDCC

In the large memory model, the address space is 16 bits for objects and 24 bits for functions. Since the STM8
typically has flash starting at 0x8000, this means that up to 32 KB of flash can be used for constant data, while the
whole Flash can be used for functions. Code generated for the large model is slightly bigger and slower and needs
slightly more stack space than code generated for the medium model.

3.15.4 MOS6502 Memory Models
SDCC implements two memory models for the MOS6502: small and large (default). Modules compiled with
different memory models should never be combined together. The library routines supplied with the compiler are
compiled for all models.

In the small model all data objects are placed by default in Page Zero. This is normally only useful in embedded
systems.

In the large memory model, data is placed by default in 16-bit addressable memory. Critical data can still be
placed in Page Zero using the __ZP or __near storage modifier. Code generated for the large model is slightly
bigger and slower than code generated for the small model.

3.16 Pragmas
Pragmas are used to turn on and/or off certain compiler options. Some of them are closely related to corresponding
command-line options (see section 3.3 on page 32).
Pragmas should be placed before and/or after a function, placing pragmas inside a function body could have
unpredictable results.

SDCC supports the following #pragma directives:

• save - this will save most current options to the save/restore stack. See #pragma restore.

• restore - will restore saved options from the last save. saves & restores can be nested. SDCC uses a
save/restore stack: save pushes current options to the stack, restore pulls current options from the stack. See
#pragma save.

• callee_saves function1[,function2[,function3...]] - The compiler by default uses a caller saves convention for
register saving across function calls, however this can cause unnecessary register pushing and popping when
calling small functions from larger functions. This option can be used to switch off the register saving con-
vention for the function names specified. The compiler will not save registers when calling these functions,
extra code need to be manually inserted at the entry and exit for these functions to save and restore the regis-
ters used by these functions, this can SUBSTANTIALLY reduce code and improve run time performance of
the generated code. In the future the compiler (with inter procedural analysis) may be able to determine the
appropriate scheme to use for each function call. If --callee-saves command line option is used (see page on
page 35), the function names specified in #pragma callee_saves is appended to the list of functions specified
in the command line.

• exclude none | {acc[,b[,dpl[,dph[,bits]]]]} - The exclude pragma disables the generation of pairs of push/pop
instructions in Interrupt Service Routines. The directive should be placed immediately before the ISR func-
tion definition and it affects ALL ISR functions following it. To enable the normal register saving for ISR
functions use #pragma exclude none. See also the related keyword __naked.

• less_pedantic - the compiler will not warn you anymore for obvious mistakes, you’re on your own now ;-(.
See also the command line option --less-pedantic on page 35.
More specifically, the following warnings will be disabled: comparison is always [true/false] due to limited
range of data type (94); overflow in implicit constant conversion (158); [the (in)famous] conditional flow
changed by optimizer: so said EVELYN the modified DOG (110); function ’[function name]’ must return
value (59).
Furthermore, warnings of less importance (of PEDANTIC and INFO warning level) are disabled, too,
namely: constant value ’[]’, out of range (81); [left/right] shifting more than size of object changed to zero
(116); unreachable code (126); integer overflow in expression (165); unmatched #pragma save and #pragma
restore (170); comparison of ’signed char’ with ’unsigned char’ requires promotion to int (185); ISO C90

62

3.16. PRAGMAS CHAPTER 3. USING SDCC

does not support flexible array members (187); extended stack by [number] bytes for compiler temp(s) :in
function ’[function name]’: [] (114); function ’[function name]’, # edges [number] , # nodes [number] ,
cyclomatic complexity [number] (121).

• disable_warning <nnnn> - the compiler will not warn you anymore about warning number <nnnn>.

• nogcse - will stop global common subexpression elimination.

• noinduction - will stop loop induction optimizations.

• noinvariant - will not do loop invariant optimizations. For more details see Loop Invariants in section8.1.4.

• noiv - Do not generate interrupt vector table entries for all ISR functions defined after the pragma. This
is useful in cases where the interrupt vector table must be defined manually, or when there is a secondary,
manually defined interrupt vector table (e.g. for the autovector feature of the Cypress EZ-USB FX2). More
elegantly this can be achieved by omitting the optional interrupt number after the __interrupt keyword, see
section 3.8 about interrupts.

• noloopreverse - Will not do loop reversal optimization

• nooverlay - the compiler will not overlay the parameters and local variables of a function.

• stackauto- See option --stack-auto and section 3.6 Parameters and Local Variables.

• opt_code_speed - The compiler will optimize code generation towards fast code, possibly at the expense of
code size.

• opt_code_size - The compiler will optimize code generation towards compact code, possibly at the expense
of code speed.

• opt_code_balanced - The compiler will attempt to generate code that is both compact and fast, as long as
meeting one goal is not a detriment to the other (this is the default).

• std_sdcc89 - Generally follow the C89 standard, but allow SDCC features that conflict with the standard.

• std_c89 - Follow the C89 standard and disable SDCC features that conflict with the standard.

• std_sdcc99 - Generally follow the C99 standard, but allow SDCC features that conflict with the standard.

• std_c99 - Follow the C99 standard and disable SDCC features that conflict with the standard.

• std_c11 - Follow the C11 standard and disable SDCC features that conflict with the standard.

• std_sdcc11 - Follow the C11 standard, but allow SDCC features that conflict with the standard.

• std_c23- Follow the C23 standard and disable SDCC features that conflict with the standard (for backwards
compatibility, std_c2x still exists as an alias).

• std_sdcc99 - Generally follow the C23 standard, but allow SDCC features that conflict with the standard.

• codeseg <name>- Use this name (max. 8 characters) for the code segment. See option --codeseg.

• constseg <name>- Use this name (max. 8 characters) for the const segment. See option --constseg.

The preprocessor SDCPP supports the following #pragma directives:

• preproc_asm (+ | -) - switch the __asm __endasm block preprocessing on / off. Default is on. Below is an
example on how to use this pragma.

#pragma preproc_asm -
/* this is a c code nop */
#define NOP ;

void foo (void)
{

63

3.16. PRAGMAS CHAPTER 3. USING SDCC

...
while (--i)

NOP
...
__asm
; this is an assembler nop instruction
; it is not preprocessed to ’;’ since the asm preprocessing is
disabled
NOP
__endasm;
...

}
The pragma preproc_asm should not be used to define multilines of assembly code (even if it supports

it), since this behavior is only a side effect of sdcpp __asm __endasm implementation in combi-
nation with pragma preproc_asm and is not in conformance with the C standard. This behavior
might be changed in the future sdcpp versions. To define multilines of assembly code you have to
include each assembly line into it’s own __asm __endasm block. Below is an example for multiline
assembly defines.

#define Nop __asm \
nop \
__endasm

#define ThreeNops Nop; \
Nop; \
Nop

void foo (void)
{

...
ThreeNops;
...

}

• sdcc_hash (+ | -) - Until SDCC 4.2.8: Allow "naked" hash in macro definition, for example:
#define DIR_LO(x) #(x & 0xff)
Default is off. Below is an example on how to use this pragma.

#pragma preproc_asm +
#pragma sdcc_hash +

#define ROMCALL(x) \
mov R6_B3, #(x & 0xff) \
mov R7_B3, #((x >> 8) & 0xff) \
lcall __romcall

...
__asm
ROMCALL(72)
__endasm;
...

Some of the pragmas are intended to be used to turn-on or off certain optimizations which might cause the compiler
to generate extra stack and/or data space to store compiler generated temporary variables. This usually happens
in large functions. Pragma directives should be used as shown in the following example, they are used to control
options and optimizations for a given function.

#pragma save /* save the current settings */
#pragma nogcse /* turnoff global subexpression elimination */

64

3.17. DEFINES CREATED BY THE COMPILER CHAPTER 3. USING SDCC

#pragma noinduction /* turn off induction optimizations */
int foo ()
{

...
/* large code */
...

}
#pragma restore /* turn the optimizations back on */

The compiler will generate a warning message when extra space is allocated. It is strongly recommended that the
save and restore pragmas be used when changing options for a function.

3.17 Defines Created by the Compiler
Besides defines from the C standards, the compiler creates the following #defines:

#define Description
__SDCC Always defined. Version number string (e.g.

SDCC_3_2_0 for sdcc 3.2.0).
SDCC OBSOLETE. WILL BE REMOVED IN THE

FUTURE. CURRENTLY Only defined for the mcs51
backend (and only if –std-cXX is not used). This
macro has been available since SDCC 2.5.6 and is the
version number as an int (ex. 256). PLEASE USE
OTHER VERSION MACROS INSTEAD!

__SDCC_mcs51 or __SDCC_ds390 or __SDCC_z80,
etc.

depending on the model used (e.g.: -mds390). Older
versions used SDCC_mcs51, etc instead.

__SDCC_STACK_AUTO when --stack-auto option is used
__SDCC_MODEL_SMALL when --model-small is used
__SDCC_MODEL_MEDIUM when --model-medium is used
__SDCC_MODEL_LARGE when --model-large is used
__SDCC_MODEL_HUGE when --model-huge is used
__SDCC_USE_XSTACK when --xstack option is used
__SDCC_STACK_TENBIT when -mds390 is used
__SDCC_MODEL_FLAT24 when -mds390 is used
__SDCC_VERSION_MAJOR Always defined. SDCC major version number. E.g. 3

for SDCC 3.5.0
__SDCC_VERSION_MINOR Always defined. SDCC minor version number. E.g. 5

for SDCC 3.5.0
__SDCC_VERSION_PATCH Always defined. SDCC patchlevel version number.

E.g. 0 for SDCC 3.5.0
__SDCC_REVISION Always defined. SDCC svn revision number. Older

versions of sdcc used SDCC_REVISION instead.
SDCC_PARMS_IN_BANK1 when --parms-in-bank1 is used
__SDCC_ALL_CALLEE_SAVES when --all-callee-saves is used
__SDCC_FLOAT_REENT when --float-reent is used
__SDCC_INT_LONG_REENT when --int-long-reent is used
__SDCC_OPTIMIZE_SPEED when --opt-code-speed is used
__SDCC_OPTIMIZE_SIZE when --opt-code-size is used
__SDCCCALL Default ABI version for calling convention

65

Chapter 4

Notes on supported Processors

4.1 MCS51 variants
MCS51 processors are available from many vendors and come in many different flavours. While they might differ
considerably in respect to Special Function Registers the core MCS51 is usually not modified or is kept compatible.

4.1.1 pdata access by SFR
With the upcome of devices with internal xdata and flash memory devices using port P2 as dedicated I/O port is
becoming more popular. Switching the high byte for __pdata access which was formerly done by port P2 is then
achieved by a Special Function Register. In well-established MCS51 tradition the address of this sfr is where the
chip designers decided to put it. Needless to say that they didn’t agree on a common name either. So that the startup
code can correctly initialize xdata variables, you should define an sfr with the name _XPAGE at the appropriate
location if the default, port P2, is not used for this. Some examples are:

__sfr __at (0x85) _XPAGE; /* Ramtron VRS51 family a.k.a. MPAGE */

__sfr __at (0x92) _XPAGE; /* Cypress EZ-USB family, Texas Instruments
(Chipcon) a.k.a. MPAGE */

__sfr __at (0x91) _XPAGE; /* Infineon (Siemens) C500 family a.k.a.
XPAGE */

__sfr __at (0xaf) _XPAGE; /* some Silicon Labs (Cygnal) chips
a.k.a. EMI0CN */

__sfr __at (0xaa) _XPAGE; /* some Silicon Labs (Cygnal) chips
a.k.a. EMI0CN */

There are also devices without anything resembling _XPAGE, but luckily they usually have dual data-pointers. For
these devices a different method can be used to correctly initialize xdata variables. A default implementation is
already in crtxinit.asm but it needs to be assembled manually with DUAL_DPTR set to 1.

For more exotic implementations further customizations may be needed. See section 4.1.4 for other possibili-
ties.

4.1.2 Other Features available by SFR
Some MCS51 variants offer features like Dual DPTR, multiple DPTR, decrementing DPTR, 16x16 Multiply. These
are currently not used for the MCS51 port. If you absolutely need them you can fall back to inline assembly or
submit a patch to SDCC.

4.1.3 Bankswitching
Bankswitching (a.k.a. code banking) is a technique to increase the code space above the 64k limit of the 8051.

66

4.1. MCS51 VARIANTS CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

4.1.3.1 Hardware

8000-FFFF bank1 bank2 bank3
0000-7FFF common

SiLabs C8051F120 example

Usually the hardware uses some sfr (an output port or an internal sfr) to select a bank and put it in the
banked area of the memory map. The selected bank usually becomes active immediately upon assignment to this
sfr and when running inside a bank it will switch out this code it is currently running. Therefor you cannot jump
or call directly from one bank to another and need to use a so-called trampoline in the common area. For SDCC
an example trampoline is in crtbank.asm and you may need to change it to your 8051 derivative or schematic. The
presented code is written for the C8051F120.

When calling a banked function SDCC will put the LSB of the functions address in register R0, the MSB
in R1 and the bank in R2 and then call this trampoline __sdcc_banked_call. The current selected bank is saved on
the stack, the new bank is selected and an indirect jump is made. When the banked function returns it jumps to
__sdcc_banked_ret which restores the previous bank and returns to the caller.

4.1.3.2 Software

When writing banked software using SDCC you need to use some special keywords and options. You also need to
take over a bit of work from the linker.

To create a function that can be called from another bank it requires the keyword __banked. The caller
must see this in the prototype of the callee and the callee needs it for a proper return. Called functions within the
same bank as the caller do not need the __banked keyword nor do functions in the common area. Beware: SDCC
does not know or check if functions are in the same bank. This is your responsibility!

Normally all functions you write end up in the segment CSEG. If you want a function explicitly to reside
in the common area put it in segment HOME. This applies for instance to interrupt service routines as they should
not be banked.

Functions that need to be in a switched bank must be put in a named segment. The name can be mostly
anything up to eight characters (e.g. BANK1). To do this you either use --codeseg BANK1 (See 3.3.4) on the
command line when compiling or #pragma codeseg BANK1 (See 3.16) at the top of the C source file. The segment
name always applies to the whole source file and generated object so functions for different banks need to be
defined in different source files.

When linking your objects you need to tell the linker where to put your segments. To do this you use the
following command line option to SDCC: -Wl-b BANK1=0x18000 (See 3.3.5). This sets the virtual start address
of this segment. It sets the banknumber to 0x01 and maps the bank to 0x8000 and up. The linker will not check for
overflows, again this is your responsibility.

4.1.4 MCS51/DS390 Startup Code
The compiler triggers the linker to link certain initialization modules from the runtime library called
crt<something>. Only the necessary ones are linked, for instance crtxstack.asm (GSINIT1, GSINIT5) is
not linked unless the --xstack option is used. These modules are highly entangled by the use of special
segments/areas, but a common layout is shown below:

(main.asm)

.area HOME (CODE)

__interrupt_vect:
ljmp __sdcc_gsinit_startup

(crtstart.asm)

.area GSINIT0 (CODE)

__sdcc_gsinit_startup::
mov sp,#__start__stack - 1

(crtxstack.asm)

67

4.1. MCS51 VARIANTS CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

.area GSINIT1 (CODE)

__sdcc_init_xstack::

; Need to initialize in GSINIT1 in case the user’s __sdcc_external_startup uses the

xstack.

mov __XPAGE,#(__start__xstack >> 8)
mov _spx,#__start__xstack

(crtstart.asm)

.area GSINIT2 (CODE)

lcall ___sdcc_external_startup

mov a,dpl

jz __sdcc_init_data

ljmp __sdcc_program_startup
__sdcc_init_data:

(crtxinit.asm)

.area GSINIT3 (CODE)

__mcs51_genXINIT::

mov r1,#l_XINIT

mov a,r1

orl a,#(l_XINIT >> 8)

jz 00003$

mov r2,#((l_XINIT+255) >> 8)

mov dptr,#s_XINIT

mov r0,#s_XISEG

mov __XPAGE,#(s_XISEG >> 8)

00001$: clr a

movc a,@a+dptr

movx @r0,a

inc dptr

inc r0

cjne r0,#0,00002$

inc __XPAGE

00002$: djnz r1,00001$

djnz r2,00001$

mov __XPAGE,#0xFF
00003$:

(crtclear.asm)

.area GSINIT4 (CODE)

__mcs51_genRAMCLEAR::

clr a

mov r0,#(l_IRAM-1)

00004$: mov @r0,a

djnz r0,00004$
; _mcs51_genRAMCLEAR() end

(crtxclear.asm)

.area GSINIT4 (CODE)

__mcs51_genXRAMCLEAR::

mov r0,#l_PSEG

mov a,r0

orl a,#(l_PSEG >> 8)

jz 00006$

mov r1,#s_PSEG

mov __XPAGE,#(s_PSEG >> 8)

clr a

00005$: movx @r1,a

inc r1

djnz r0,00005$

68

4.1. MCS51 VARIANTS CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

00006$:

mov r0,#l_XSEG

mov a,r0

orl a,#(l_XSEG >> 8)

jz 00008$

mov r1,#((l_XSEG + 255) >> 8)

mov dptr,#s_XSEG

clr a

00007$: movx @dptr,a

inc dptr

djnz r0,00007$

djnz r1,00007$
00008$:

(crtxstack.asm)

.area GSINIT5 (CODE)

; Need to initialize in GSINIT5 because __mcs51_genXINIT modifies __XPAGE

; and __mcs51_genRAMCLEAR modifies _spx.

mov __XPAGE,#(__start__xstack >> 8)
mov _spx,#__start__xstack

(application modules)

.area GSINIT (CODE)

(main.asm)

.area GSFINAL (CODE)

ljmp __sdcc_program_startup

;--

; Home

;--

.area HOME (CODE)

.area CSEG (CODE)

__sdcc_program_startup:

lcall _main

; return from main will lock up
sjmp .

On some mcs51 variants __xdata memory has to be explicitly enabled before it can be accessed or if the watchdog
needs to be disabled, this is the place to do it. The startup code clears all internal data memory, 256 bytes by default,
but from 0 to n-1 if --iram-size <n> is used. (recommended for Chipcon CC1010).

See also the compiler option --no-xinit-opt and section 4.1 about MCS51-variants.

While these initialization modules are meant as generic startup code there might be the need for cus-
tomization. Let’s assume the return value of __sdcc_external_startup() in crtstart.asm should not be checked
(or __sdcc_external_startup() should not be called at all). The recommended way would be to copy crt-
start.asm (f.e. from http://svn.code.sf.net/p/sdcc/code/trunk/sdcc/device/lib/mcs51/
crtstart.asm) into the source directory, adapt it there, then assemble it with sdas8051 -plosgff 1 crtstart.asm
and when linking your project explicitly specify crtstart.rel. As a bonus a listing of the relocated object file crt-
start.rst is generated.

4.1.5 Interfacing with Assembler Code
4.1.5.1 Global Registers used for Parameter Passing

The compiler always uses the global registers DPL, DPH, B and ACC to pass the first (non-bit, non-struct) parameter
to a function, and also to pass the return value of function; according to the following scheme: one byte return value
in DPL, two byte value in DPL (LSB) and DPH (MSB). three byte values (generic pointers) in DPH, DPL and B,

1”-plosgff” are the assembler options used in http://sdcc.svn.sourceforge.net/viewvc/sdcc/trunk/sdcc/device/
lib/mcs51/Makefile.in?view=markup

69

http://svn.code.sf.net/p/sdcc/code/trunk/sdcc/device/lib/mcs51/crtstart.asm
http://svn.code.sf.net/p/sdcc/code/trunk/sdcc/device/lib/mcs51/crtstart.asm
http://sdcc.svn.sourceforge.net/viewvc/sdcc/trunk/sdcc/device/lib/mcs51/Makefile.in?view=markup
http://sdcc.svn.sourceforge.net/viewvc/sdcc/trunk/sdcc/device/lib/mcs51/Makefile.in?view=markup

4.1. MCS51 VARIANTS CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

and four byte values in DPH, DPL, B and ACC. Generic pointers contain type of accessed memory in B: 0x00 –
xdata/far, 0x40 – idata/near – , 0x60 – pdata, 0x80 – code.

Further such parameters (and all struct parameters, as well as the bit parameters from the 9th onwards) are either
allocated on the stack (for reentrant routines or if --stack-auto is used) or in data/xdata memory (depending on the
memory model).

The first 8 bit parameters are passed in a virtual register called ’bits’ in bit-addressable space for reentrant
functions or allocated directly in bit memory otherwise.

Functions (with two or more parameters or bit parameters) that are called through function pointers must there-
for be reentrant so the compiler knows how to pass the parameters.

4.1.5.2 Register usage

Unless the called function is declared as _naked, or the --callee-saves/--all-callee-saves command line option or
the corresponding callee_saves pragma are used, the caller will save the registers (R0-R7) around the call, so the
called function can destroy they content freely.

If the called function is not declared as _naked, the caller will swap register banks around the call, if caller
and callee use different register banks (having them defined by the __using modifier).

The called function can also use DPL, DPH, B and ACC observing that they are used for parameter/return value
passing.

4.1.5.3 Assembler Routine (non-reentrant)

In the following example the function c_func calls an assembler routine asm_func, which takes two parameters.

extern int asm_func(unsigned char, unsigned char);

int c_func (unsigned char i, unsigned char j)
{

return asm_func(i,j);
}

int main()
{

return c_func(10,9);
}

The corresponding assembler function is:

.globl _asm_func_PARM_2

.globl _asm_func

.area OSEG
_asm_func_PARM_2:

.ds 1

.area CSEG
_asm_func:

mov a,dpl
add a,_asm_func_PARM_2
mov dpl,a
mov dph,#0x00
ret

The parameter naming convention is _<function_name>_PARM_<n>, where n is the parameter number starting
from 1, and counting from the left. The first parameter is passed in DPH, DPL, B and ACC according to the
description above. The variable name for the second parameter will be _<function_name>_PARM_2.

Assemble the assembler routine with the following command:

sdas8051 -losg asmfunc.asm

70

4.2. DS400 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

Then compile and link the assembler routine to the C source file with the following command:

sdcc cfunc.c asmfunc.rel

4.1.5.4 Assembler Routine (reentrant)

In this case the second parameter onwards will be passed on the stack, the parameters are pushed from right to left
i.e. before the call the second leftmost parameter will be on the top of the stack (the leftmost parameter is passed in
registers). Here is an example:

extern int asm_func(unsigned char, unsigned char, unsigned char)
reentrant;

int c_func (unsigned char i, unsigned char j, unsigned char k)
reentrant

{
return asm_func(i,j,k);

}

int main()
{

return c_func(10,9,8);
}

The corresponding (unoptimized) assembler routine is:

.globl _asm_func
_asm_func:

push _bp
mov _bp,sp ;stack contains: _bp, return address, second

parameter, third parameter
mov r2,dpl
mov a,_bp
add a,#0xfd ;calculate pointer to the second parameter
mov r0,a
mov a,_bp
add a,#0xfc ;calculate pointer to the rightmost parameter
mov r1,a
mov a,@r0
add a,@r1
add a,r2 ;calculate the result (= sum of all three

parameters)
mov dpl,a ;return value goes into dptr (cast into int)
mov dph,#0x00
mov sp,_bp
pop _bp
ret

The compiling and linking procedure remains the same, however note the extra entry & exit linkage required for
the assembler code, _bp is the stack frame pointer and is used to compute the offset into the stack for parameters
and local variables.

4.2 DS400 port
The DS80C400 microcontroller has a rich set of peripherals. In its built-in ROM library it includes functions to
access some of the features, among them is a TCP stack with IP4 and IP6 support. Library headers (currently
in beta status) and other files are provided at ftp://ftp.dalsemi.com/pub/tini/ds80c400/c_libraries/sdcc/
index.html.

71

ftp://ftp.dalsemi.com/pub/tini/ds80c400/c_libraries/sdcc/index.html
ftp://ftp.dalsemi.com/pub/tini/ds80c400/c_libraries/sdcc/index.html

4.3. THE Z80, Z180, RABBIT 2000, RABBIT 2000A, RABBIT 3000A, SM83 (GAMEBOY), EZ80, TLCS-90
AND R800 PORTS CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

4.3 The Z80, Z180, Rabbit 2000, Rabbit 2000A, Rabbit 3000A, SM83
(GameBoy), eZ80, TLCS-90 and R800 ports

SDCC can target the Z80, Z180, eZ80 in Z80 mode, Rabbit 2000, Rabbit 2000A, Rabbit 3000A and LR35902, the
Sharp SM83 (used .e.g in the Nintendo GameBoy) sm83.

When a frame pointer is used, it resides in IX. Register A, B, C, D, E, H, L and IY are used as a temporary
registers for holding variables.

When enabling optimizations using --opt-code size and a sufficiently high value for --max-allocs-per-node
SDCC typically generates much better code for these architectures than many other compilers. A comparison of
compilers for these architecture can be found at http://sdcc.sourceforge.net/wiki/index.php/
Z80_code_size.

4.3.1 Startup Code
On the Z80 the startup code is inserted by linking with crt0.rel which is generated from sdcc/device/lib/z80/crt0.s.
If you need a different startup code you can use the compiler option --no-std-crt0 and provide your own crt0.rel.
When using a custom crt0.rel it needs to be listed first when linking.

4.3.2 Rabbit ports
SDCC has three Rabbit-supporting ports: r2k for the Rabbit 2000, r2ka for the Rabbit 2000A, 2000B, 2000C and
3000, r3ka for the Rabbit 3000A. The instruction set of the Rabbit 2000 to Rabbit 3000 is the same, and a subset of
the Rabbit 3000A instruction set. Code from the r2k backend will work on Rabbit 2000 to 3000A and code from
the r2ka backend will work on Rabbit 2000A to 3000A. In some hardware configurations (see below), code from
the r2ka backend will work on the Rabbit 2000. Typically, code from the r3ka backend will be faster and smaller
than code from the r2ka backend, and code from the r2ka backend will be faster and smaller than code from the r2k
backend.

4.3.2.1 Rabbit wait states

There are multiple wait state bugs present in some of the the Rabbits. The difference between the r2k and r2ka port
is in additional wait state bug workarounds. If all memory used has zero wait states, code from the r2ka backend
can be safely run on the original Rabbit 2000.

Note that The r2k and r2ka port assume that the whole stack has the same number of wait states (code from the
r2k and r2ka ports can fail is the stack spans memories with a different amount of wait states).

The Rabbit 2000 has some wait state bugs that SDCC does not work around. These bugs result in the number
of wait states used being one less than configured for some instructions. The workaround has to be supplied by the
user, by configuring all memories that do use wait states to use on additional wait state.

For all Rabbit ports, SDCC assumes that all data memory is at least as fast (i.e. does not need more wait states)
as all code memory. Code where this is not the case (e.g. code in fast Flash writing into slow battery-backed
SRAM) will have to be written in assembler by hand.

4.3.3 Z80, Z180, Z80N and R800 calling conventions
The current default is the SDCC calling convention, version 1. Using the command-line option –sdcccall 0, the
default can be changed to version 0. There are three other calling conventions supported, which can be specified
using the keywords __smallc, __z88dk_fastcall and __z88dk_callee. They are primarily intended for compatibility
with libraries written for other compilers. For __z88dk_fastcall, there may be only one parameter of at most 32 bits,
which is passed the same way as the return value of __sdcccall(0). For __z88dk_callee, the stack is not adjusted
for stack parameters the parameters after the call (thus the callee has to do this instead). __z88dk_callee can be
combined with __smallc, __sdcccall(0) or __sdcccall(1).

4.3.3.1 Z80 SDCC calling convention, version 1

This calling convention can be chosen per function via __sdcccall(1). 8-bit return values are passed in a, 16-bit
values in de, 24-bit values in lde, 32-bit values in hlde. Larger return values (as well as struct and union independent
of their size) are passed in memory in a location specified by the caller through a hidden pointer argument.

72

http://sdcc.sourceforge.net/wiki/index.php/Z80_code_size
http://sdcc.sourceforge.net/wiki/index.php/Z80_code_size

4.3. THE Z80, Z180, RABBIT 2000, RABBIT 2000A, RABBIT 3000A, SM83 (GAMEBOY), EZ80, TLCS-90
AND R800 PORTS CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

For functions that have variable arguments: All parameters are passed on the stack. The stack is not adjusted
for the parameters by the callee (thus the caller has to do this instead).

For Functions that do not have variable arguments: the first parameter is passed in a if it has 8 bits. If it has 16
bits it is passed in hl. If it has 32 bits, it is passed in hlde. If the first parameter is in a, and the second has 8 bits, it
is passed in l; if the first is passed in a or hl, and the second has 16 bits, it is passed in de; all other parameters are
passed on the stack, right-to-left. Independent of their size, struct / union parameters and all following parameters
are always passed on the stack.

If __z88dk_callee is not used, after the call, the stack parameters are cleaned up by the caller, with the following
exceptions: functions that do not have variable arguments and return void or a type of at most 16 bits, or have both
a first parameter of type float and a return value of type float.

4.3.3.2 Z80 SDCC calling convention, version 0

This calling convention can be chosen per function via __sdcccall(0). All parameters are passed on the stack, right-
to-left. 8-bit return values are passed in l, 16-bit values in hl, 24-bit values in ehl, 32-bit values in dehl. Except for
the SM83, where 8-bit values are passed in e, 16-bit values in de, 32-bit values in hlde. Larger return values (as well

73

4.3. THE Z80, Z180, RABBIT 2000, RABBIT 2000A, RABBIT 3000A, SM83 (GAMEBOY), EZ80, TLCS-90
AND R800 PORTS CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

as struct and union independent of their size) are passed in a memory in a location specified by the caller through a
hidden pointer argument. Unless __z88dk_callee is used, all stack parameters are cleaned up by the caller.

4.3.4 Rabbit 2000, Rabbit 2000A, Rabbit 3000A, eZ80 and TLCS-90 calling conventions
The current default is the Rabbit calling convetion desribed here, version 1. Using the command-line option –sd-
cccall 8, the default can be changed to version 0 of the Z80 calling convention, described above. There are four
other calling conventions supported, which can be specified using the keywords __smallc, __z88dk_fastcall and
__z88dk_callee. They are primarily intended for compatibility with libraries written for other compilers. For
__z88dk_fastcall, there may be only one parameter of at most 32 bits, which is passed the same way as the return
value. For __z88dk_callee, the stack is not adjusted for stack parameters the parameters after the call (thus the
callee has to do this instead). __z88dk_callee can be combined with __smallc, __sdcccall(0) or __sdcccall(1).

4.3.4.1 Rabbit SDCC calling convention, version 1

This calling convention can be chosen per function via __sdcccall(1). 8-bit return values are passed in a, 16-bit
values in hl, 24-bit values in lde, 32-bit values in hlde. Larger return values (as well as struct and union independent
of their size) are passed in memory in a location specified by the caller through a hidden pointer argument.

For functions that have variable arguments: All parameters are passed on the stack. The stack is not adjusted
for the parameters by the callee (thus the caller has to do this instead).

For Functions that do not have variable arguments: the first parameter is passed in a if it has 8 bits. If it has 16
bits it is passed in hl. If it has 32 bits, it is passed in hlde. If the first parameter is in a, and the second has 8 bits, it
is passed in l; if the first is in hl or hlde, and the second has 8 bits, it is passed in a; if the first is in a, and the second
has 16 bits, it is passed in hl; all other parameters are passed on the stack, right-to-left. Independent of their size,
struct / union parameters and all following parameters are always passed on the stack.

74

4.3. THE Z80, Z180, RABBIT 2000, RABBIT 2000A, RABBIT 3000A, SM83 (GAMEBOY), EZ80, TLCS-90
AND R800 PORTS CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

If __z88dk_callee is not used, after the call, the stack parameters are cleaned up by the caller, with the following
exceptions: functions that do not have variable arguments and return void or a type of at most 16 bits, or have both
a first parameter of type float and a return value of type float.

4.3.5 SM83 calling conventions
The current default is the SDCC calling convention, version 1. Using the command-line option –sdcccall 0, the
default can be changed to version 0.

4.3.5.1 SM83 SDCC calling convention, version 1

This calling convention can be chosen per function via __sdcccall(1).
8-bit return values are passed in a, 16-bit values in bc, 32-bit values in debc. Larger return values (as well as

struct and union independent of their size) are passed in memory in a location specified by the caller through a
hidden pointer argument.

For functions that have variable arguments: All parameters are passed on the stack. The stack is not adjusted
for the parameters by the callee (thus the caller has to do this instead).

75

4.3. THE Z80, Z180, RABBIT 2000, RABBIT 2000A, RABBIT 3000A, SM83 (GAMEBOY), EZ80, TLCS-90
AND R800 PORTS CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

For Functions that do not have variable arguments: the first parameter is passed in a if it has 8 bits. If it has 16
bits it is passed in de. If it has 32 bits, it is passed in debc. If the first parameter is in a, and the second has 8 bits, it
is passed in e; if the first is in bc or debc, and the second has 8 bits, it is passed in a; if the first is passed in a, and
the second has 16 bits, it is passed in bc; if the first is passed in de, and the second has 16 bits, it is passed in bc; all
other parameters are passed on the stack, right-to-left. Independent of their size, struct / union parameters and all
following parameters are always passed on the stack. The stack is adjusted by the callee (thus explicitly specifying
__z88dk_callee does not make a difference), unless the functionhas variable arguments.

4.3.5.2 SM83 SDCC calling convention, version 0

This calling convention can be chosen per function via __sdcccall(0). 8-bit return values are passed in e, 16-bit
values in de, 32-bit values in hlde. Larger return values (as well as struct and union independent of their size) are
passed in memory in a location specified by the caller through a hidden pointer argument. All parameters are passed
on the stack. The stack is not adjusted for the parameters by the callee (thus the caller has to do this instead), unless
__z88dk_callee is specified. __sdcccall(0) can be combined with __z88dk_callee.

4.3.6 Small-C calling convention
Functions declared as __smallc are called using the Small-C calling convention (passing arguments on-stack left-
to-right, 1 byte arguments are passed as 2 bytes, with the value in the lower byte). 8-bit return values are passed in a,
16-bit values in de, 32-bit values in hlde. Larger return values (as well as struct and union independent of their size)
are passed in memory in a location specified by the caller through a hidden pointer argument. This way assembler
routines originally written for Small-C or code generated by Small-C can be called from SDCC. Currently variable
arguments are not yet supported (neither on the caller nor on the callee side).

4.3.7 Complex instructions
The Z80 and some derivatives support complex instructions, such as ldir, cpir, SDCC only emits these instruc-
tions for functions in the standard library. Thus, e.g. copying one array into another is more efficient when using
memcpy() than by using a a user-written loop.

Depending on the target, code generation options and the parameters to the call, SDCC emits ldir for memcpy(),
ldir or lsidr for memset(), ldi for strcpy(), ldi for strncpy(). Other library functions use the complex instructions as
well, but for those, function calls are generated.

4.3.8 Unsafe reads
Usually, Z80-based systems (except for the SM83 and TLCS-90) have separate I/O and memory spaces, and any
normal memory location can be read without side-effects. For such systems, the option –allow-unsafe-reads can be
used to enable some extra optimizations that rely on this.

4.3.9 Z80 banked calls
Banked calls are supported via __banked. Banked calls are done via a trampoline (__sdcc_bcall if --legacy-banking
is specified, __sdcc_bcall_abc for z88dk_fastcall, __sdcc_bcall_ehl for other calls). Default trampolines are pro-
vided in the library. The default trampolines calls user supplied helper functions set_bank and get_bank that set the
current bank to the value in register a, or return the current bank in register a.

For banked functions, the calling convention is slightly different: the stack is always cleared up by the caller.
Unless __z88dk_fastcall is used, all parameters are passed on the stack.

76

4.4. THE HC08 AND S08 PORTS CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

4.4 The HC08 and S08 ports
The port to the Freescale/Motorola HC08 and S08 does not yet generate code as compact as that generated by
some non-free compilers. A comparison of compilers for these architecture can be found at http://sdcc.
sourceforge.net/wiki/index.php/Hc08_code_size.

4.4.1 Startup Code
The HC08 startup code follows the same scheme as the MCS51 startup code.

4.5 The STM8 port

4.5.1 Calling conventions
By default, the SDCC calling convention, version 1 is used. Using the option –sdcccall 0, the default can be changed
to version 0.

Arguments are passed on the stack right-to-left. Return values are in a (8 bit), x (16 bit), xyl (24 bit), xy (32 bit)
or use a hidden extra pointer parameter pointing to the location (anything wider than 32 bit, and all struct / union).

4.5.1.1 SDCC calling convention, version 1

For functions that have variable arguments, all parameters are passed on the stack. For other functions, if the
first parameter has 8 or 16 bits, it is passed in a or x. If the first parameter is passed in a, and the second has 16 bits,
the second is passed in x. If the first parameter is passed in x, and the second has 8 bits, the second is passed in a.
All other parameters are passed on the stack. Independent of their size, struct / union parameters and all following
parameters are always passed on the stack. If __z88dk_callee is specified, the stack is always adjusted by the callee.
Otherwise, for the large memory model, the stack is always adjusted by the caller. For the medium memory model
the stack is adjusted by the caller, with the following exceptions: functions that do not have variable arguments and
return void or a type of at most 16 bits, or have both a first parameter of type float and a return value of type float.

4.5.1.2 SDCC calling convention, version 0

This calling convention can be chosen per function via __sdcccall(0) (e.g. for compatibility with functions written
in assembler for use with older versions of SDCC). All parameters are passed on the stack. The stack is not adjusted
for the parametersby the callee (thus the caller has to do this instead), unless __z88dk_callee is specified.

4.5.1.3 Raisonance calling convention

For compatibility with the Raisonance STM8 compiler, the __raisonance calling convention is supported. If the
first parameter is 8 or 16 bits, it is passed in a or x. If the first parameter is 8 bits, and the second 16 bits, the
second is passed in x. If the first parameter is 16 bits, and the second is 8 bits, the second is passed in a. All other
parameters are passed on the stack. If the return value is 8 bits, it is passed in a. If it is 16 bits, it is passed in x.
Raisonance passes larger return values in pseudoregisters, which is not supported by SDCC.

4.5.1.4 IAR calling convention

For compatibility with the IAR STM8 compiler, the __iar calling convention is supported. The first 8-bit parameter
is passed in a, the first 16-bit parameter in x, the second 16-bit parameter in y. Further parameters of up to 32
bits are passed in pseudoregisters, which is not supported by SDCC. All other parameters are passed on the stack.
If the return value is 8 bits, it is passed in a. If it is 16 bits, it is passed in x. IAR passes larger return values in
pseudoregisters, which is not supported by SDCC.

77

http://sdcc.sourceforge.net/wiki/index.php/Hc08_code_size
http://sdcc.sourceforge.net/wiki/index.php/Hc08_code_size

4.6. THE PIC14 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

4.5.1.5 Cosmic calling convention

For compatibility with the Cosmic STM8 compiler, the __cosmic calling convention is supported. If the first
parameter is 8 or 16 bits, it is passed in a or x. If the return value is 8 bits, it is passed in a. If it is 16 bits, it is
passed in x. Cosmic passes larger return values in pseudoregisters, which is not supported by SDCC. Even for the
medium memory model, __cosmic functions use a 24-bit return address in their stack frame, and are called using
callf.

4.6 The PIC14 port
The PIC14 port adds support for MicrochipTM PICTM MCUs with 14 bit wide instructions. This port is not yet
mature and still lacks many features. However, it can work for simple code.
Currently supported devices include:

10F320, 10F322, 10LF320, 10LF322
12F609, 12F615, 12F617, 12F629, 12F635, 12F675, 12F683
12F752
12HV752
16C62, 16C63A, 16C65B
16C71, 16C72, 16C73B, 16C74B
16C432, 16C433
16C554, 16C557, 16C558
16C620, 16C620A, 16C621, 16C621A, 16C622, 16C622A
16C710, 16C711, 16C715, 16C717, 16C745, 16C765, 16C770, 16C771, 16C773, 16C774, 16C781, 16C782
16C925, 16C926
16CR73, 16CR74, 16CR76, 16CR77
16CR620A
16F72 ,16F73, 16F74, 16F76, 16F77
16F84, 16F84A, 16F87, 16F88
16F610, 16F616, 16F627, 16F627A, 16F628, 16F628A, 16F630, 16F631, 16F636, 16F639, 16F648A
16F676, 16F677, 16F684, 16F685, 16F687, 16F688, 16F689, 16F690
16F707, 16F716, 16F720, 16F721, 16F722, 16F722A, 16F723, 16F723A, 16F724, 16F726, 16F727
16F737, 16F747, 16F753, 16F767, 16F777, 16F785
16F818, 16F819, 16F870, 16F871, 16F872, 16F873, 16F873A, 16F874, 16F874A, 16F876, 16F876A
16F877, 16F877A, 16F882, 16F883, 16F884, 16F886, 16F887
16F913, 16F914, 16F916, 16F917, 16F946
16LF74, 16LF76, 16LF77
16LF84, 16LF84A, 16LF87, 16LF88
16LF627, 16LF627A, 16LF628, 16LF628A, 16LF648A
16LF707, 16LF720, 16LF721, 16LF722, 16LF722A, 16LF723, 16LF723A, 16LF724, 16LF726, 16LF727
16LF747, 16LF767, 16LF777
16LF818, 16LF819, 16LF870, 16LF871, 16LF872, 16LF873, 16LF873A, 16LF874, 16LF874A
16LF876, 16LF876A, 16LF877, 16LF877A
16HV610, 16HV616, 16HV753, 16HV785

Supported devices with enhanced cores:

12F1501, 12F1571, 12F1572, 12F1612, 12F1822, 12F1840
12LF1501, 12LF1552, 12LF1571, 12LF1572, 12LF1612, 12LF1822, 12LF1840, 12LF1840T39A,

12LF1840T48A
16F1454, 16F1455, 16F1458, 16F1459
16F1503, 16F1507, 16F1508, 16F1509, 16F1512, 16F1513, 16F1516, 16F1517, 16F1518, 16F1519
16F1526, 16F1527, 16F1574, 16F1575, 16F1578, 16F1579
16F1613, 16F1614, 16F1615, 16F1618, 16F1619
16F1703, 16F1704, 16F1705, 16F1707, 16F1708, 16F1709, 16F1713, 16F1716, 16F1717, 16F1718, 16F1719
16F1764, 16F1765, 16F1768, 16F1769, 16F1773, 16F1776, 16F1777, 16F1778, 16F1779
16F1782, 16F1783, 16F1784, 16F1786, 16F1787, 16F1788, 16F1789

78

4.6. THE PIC14 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

16F1823, 16F1824, 16F1825, 16F1826, 16F1827, 16F1828, 16F1829, 16F1829LIN, 16F1847
16F1933, 16F1934, 16F1936, 16F1937, 16F1938, 16F1939, 16F1946, 16F1947
16F18313, 16F18323, 16F18324, 16F18325, 16F18344, 16F18345,
16F18855, 16F18875
16LF1454, 16LF1455, 16LF1458, 16LF1459
16LF1503, 16LF1507, 16LF1508, 16LF1509, 16LF1512, 16LF1513, 16LF1516, 16LF1517, 16LF1518,

16LF1519,
16LF1526, 16LF1527
16LF1554, 16LF1559, 16LF1566, 16LF1567, 16LF1574, 16LF1575, 16LF1578, 16LF1579
16LF1613, 16LF1614, 16LF1615, 16LF1618, 16LF1619
16LF1703, 16LF1704, 16LF1705, 16LF1707, 16LF1708, 16LF1709, 16LF1713, 16LF1716, 16LF1717,

16LF1718, 16LF1719
16LF1764, 16LF1765, 16LF1768, 16LF1769, 16LF1773, 16LF1776, 16LF1777, 16LF1778, 16LF1779
16LF1782, 16LF1783, 16LF1784, 16LF1786, 16LF1787, 16LF1788, 16LF1789,
16LF1823, 16LF1824, 16LF1824T39A
16LF1825, 16LF1826, 16LF1827, 16LF1828, 16LF1829, 16LF1847
16LF1902, 16LF1903, 16LF1904, 16LF1906, 16LF1907
16LF1933, 16LF1934, 16LF1936, 16LF1937, 16LF1938, 16LF1939, 16LF1946, 16LF1947
16LF18313, 16LF18323, 16LF18324, 16LF18325, 16LF18344, 16LF18345
16LF18855, 16LF18875

An up-to-date list of currently supported devices can be obtained via sdcc -mpic14 -phelp foo.c (foo.c
must exist...).

4.6.1 PIC Code Pages and Memory Banks
The linker organizes allocation for the code page and RAM banks. It does not have intimate knowledge of the code
flow. It will put all the code section of a single .asm file into a single code page. In order to make use of multiple
code pages, separate asm files must be used. The compiler assigns all static functions of a single .c file into the
same code page.

To get the best results, follow these guidelines:

1. Make local functions static, as non static functions require code page selection overhead.
Due to the way SDCC handles functions, place called functions prior to calling functions in the file wherever
possible: Otherwise SDCC will insert unnecessary pagesel directives around the call, believing that the called
function is externally defined.

2. For devices that have multiple code pages it is more efficient to use the same number of files as pages: Use
up to 4 separate .c files for the 16F877, but only 2 files for the 16F874. This way the linker can put the code
for each file into different code pages and there will be less page selection overhead.

3. And as for any 8 bit micro (especially for PIC14 as they have a very simple instruction set), use ‘unsigned
char’ wherever possible instead of ‘int’.

4.6.2 Adding New Devices to the Port
Adding support for a new 14 bit PIC MCU requires the following steps:

1. Create a new device description.
Each device is described in two files: pic16f*.h and pic16f*.c. These files primarily define SFRs, structs
to access their bits, and symbolic configuration options. Both files can be generated from gputils’ .inc files
using the perl script support/scripts/inc2h.pl. This file also contains further instructions on how
to proceed.

2. Copy the .h file into SDCC’s include path and either add the .c file to your project or copy it to
device/lib/pic/libdev. Afterwards, rebuild and install the libraries.

79

4.6. THE PIC14 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

3. Edit pic14devices.txt in SDCC’s include path (device/include/pic/ in the source tree or
/usr/local/share/sdcc/include/pic after installation).
You need to add a device specification here to make the memory layout (code banks, RAM, aliased memory
regions, ...) known to the compiler. Probably you can copy and modify an existing entry. The file format is
documented at the top of the file.

4.6.3 Interrupt Code
For the interrupt function, use the keyword __interrupt with level number of 0 (PIC14 only has 1 interrupt so this
number is only there to avoid a syntax error - it ought to be fixed). E.g.:

void Intr(void) __interrupt (0)
{

T0IF = 0; /* Clear timer interrupt */
}

4.6.4 Configuration Bits
Configuration bits (also known as fuses) can be configured using ‘__code’ and ‘__at’ modifiers. Possible options
should be ANDed and can be found in your processor header file. Example for PIC16F88:

#include <pic16f88.h> //Contains config addresses and options
#include <stdint.h> //Needed for uint16_t

static __code uint16_t __at (_CONFIG1) configword1 = _INTRC_IO &
_CP_ALL & _WDT_OFF & [...];

static __code uint16_t __at (_CONFIG2) configword2 = [...];

Although data type is ignored if the address (__at()) refers to a config word location, using a type large enough
for the configuration word (uint16_t in this case) is recommended to prevent changes in the compiler (implicit,
early range check and enforcement) from breaking the definition.

If your processor header file doesn’t contain config addresses you can declare it manually or use a literal
address:

static __code uint16_t __at (0x2007) configword1 = _INTRC_IO &
_CP_ALL & _WDT_OFF & [...];

4.6.5 Linking and Assembling
For assembling you can use either GPUTILS’ gpasm.exe or MPLAB’s mpasmwin.exe. GPUTILS are available
from http://sourceforge.net/projects/gputils. For linking you can use either GPUTILS’ gplink
or MPLAB’s mplink.exe. If you use MPLAB and an interrupt function then the linker script file vectors section
will need to be enlarged to link with mplink.

Pic device specific header and c source files are automatically generated from MPLAB include files, which
are published by Microchip with a special requirement that they are only to be used with authentic Microchip
devices. This reqirement prevents to publish generated header and c source files under the GPL compatible license,
so they are located in non-free directory (see section 2.3). In order to include them in include and library search
paths, the --use-non-free command line option should be defined.

NOTE: the compiled code, which use non-free pic device specific libraries, is not GPL compatible!

Here is a Makefile using GPUTILS:

.c.o:
sdcc -V --use-non-free -mpic14 -p16f877 -c $<

80

http://sourceforge.net/projects/gputils

4.6. THE PIC14 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

$(PRJ).hex: $(OBJS)
gplink -m -s $(PRJ).lkr -o $(PRJ).hex $(OBJS) libsdcc.lib

Here is a Makefile using MPLAB:

.c.o:
sdcc -S -V --use-non-free -mpic14 -p16f877 $<
mpasmwin /q /o $*.asm

$(PRJ).hex: $(OBJS)
mplink /v $(PRJ).lkr /m $(PRJ).map /o $(PRJ).hex $(OBJS)

libsdcc.lib

Please note that indentations within a Makefile have to be done with a tabulator character.

4.6.6 Command-Line Options
Besides the switches common to all SDCC backends, the PIC14 port accepts the following options (for an updated
list see sdcc --help):

--debug-xtra emit debug info in assembly output

--no-pcode-opt disable (slightly faulty) optimization on pCode

--stack-loc sets the lowest address of the argument passing stack (defaults to a suitably large shared databank to
reduce BANKSEL overhead)

--stack-size sets the size if the argument passing stack (default: 16, minimum: 4)

--use-non-free make non-free device headers and libraries available in the compiler’s search paths (implicit -I and
-L options)

--no-extended-instructions forbid use of the extended instruction set (e.g., ADDFSR)

4.6.7 Environment Variables
The PIC14 port recognizes the following environment variables:

SDCC_PIC14_SPLIT_LOCALS If set and not empty, sdcc will allocate each temporary register (the ones called
r0xNNNN) in a section of its own. By default (if this variable is unset), sdcc tries to cluster registers in
sections in order to reduce the BANKSEL overhead when accessing them.

4.6.8 The Library
The PIC14 library currently only contains support routines required by the compiler to implement multiplication,
division, and floating point support. No libc-like replacement is available at the moment, though many of the
common sdcc library sources (in device/lib) should also compile with the PIC14 port.

4.6.8.1 Enhanced cores

SDCC/PIC14 has experimental support for devices with the enhanced 14-bit cores (such as pic12f1822). Due to dif-
ferences in required code, the libraries provided with SDCC (libm.lib and libsdcc.lib) are now provided in
two variants: libm.lib and libsdcc.lib are compiled for the regular, non-enhanced devices. libme.lib
and libsdcce.lib (note the trailing ’e’) are compiled for enhanced devices. When linking manually, make
sure to select the proper variant!

When SDCC is used to invoke the linker, SDCC will automatically select the libsdcc.lib-variant suitable
for the target device. However, no such magic has been conjured up for libm.lib!

81

4.7. THE PIC16 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

4.6.8.2 Accessing bits of special function registers

Individual bits within SFRs can be accessed either using <sfrname>bits.<bitname> or using a shorthand
<bitname>, which is defined in the respective device header for all <bitname>s. In order to avoid polluting
the global namespace with the names of all the bits, you can #define NO_BIT_DEFINES before inclusion of
the device header file.

4.6.8.3 Naming of special function registers

If NO_BIT_DEFINES is used, individual bits of the SFRs can be accessed as <sfrname>bits.<bitname>.
With the 3.1.0 release, the previously used <sfrname>_bits.<bitname> (note the underscore) is depre-
cated. This was done to align the naming conventions with the PIC16 port and competing compiler vendors. To
avoid polluting the global namespace with the legacy names, you can prevent their definition using #define
NO_LEGACY_NAMES prior to the inclusion of the device header.

You must also #define NO_BIT_DEFINES in order to access SFRs as <sfrname>bits.<bitname>,
otherwise <bitname> will expand to <sfrname>bits.<bitname>, yielding the undefined expression
<sfrname>bits.<sfrname>bits.<bitname>.

4.6.8.4 error: missing definition for symbol “__gptrget1”

The PIC14 port uses library routines to provide more complex operations like multiplication, division/modulus
and (generic) pointer dereferencing. In order to add these routines to your project, you must link with PIC14’s
libsdcc.lib. For single source file projects this is done automatically, more complex projects must add
libsdcc.lib to the linker’s arguments. Make sure you also add an include path for the library (using the -I
switch to the linker)!

4.6.8.5 Processor mismatch in file “XXX”.

This warning can usually be ignored due to the very good compatibility amongst 14 bit PIC devices.
You might also consider recompiling the library for your specific device by changing the ARCH=p16f877

(default target) entry in device/lib/pic/Makefile.in and device/lib/pic/Makefile to reflect
your device. This might even improve performance for smaller devices as unnecessary BANKSELs might be
removed.

4.6.9 Known Bugs
4.6.9.1 Function arguments

Functions with variable argument lists (like printf) are not yet supported. Similarly, taking the address of the first
argument passed into a function does not work: It is currently passed in WREG and has no address...

4.6.9.2 Regression tests fail

Though the small subset of regression tests in src/regression passes, SDCC regression test suite does not, indicating
that there are still major bugs in the port. However, many smaller projects have successfully used SDCC in the
past...

4.7 The PIC16 port
The PIC16 port adds support for MicrochipTM PICTM MCUs with 16 bit wide instructions. This port is not yet ma-
ture and still lacks many features. However, it can work for simple code. Currently this family of microcontrollers
contains the PIC18Fxxx and PIC18Fxxxx; devices supported by the port include:

18F13K22 18F13K50
18F14K22 18F14K50
18F23K20 18F23K22
18F24J10 18F24J11 18F24J50 18F24K20 18F24K22 18F24K50
18F25J10 18F25J11 18F25J50 18F25K20 18F25K22 18F25K50 18F25K80

82

4.7. THE PIC16 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

18F26J11 18F26J13 18F26J50 18F26J53 18F26K20 18F26K22 18F26K80
18F27J13 18F27J53
18F43K20 18F43K22
18F44J10 18F44J11 18F44J50 18F44K20 18F44K22
18F45J10 18F45J11 18F45J50 18F45K20 18F45K22 18F45K50 18F45K80
18F46J11 18F46J13 18F46J50 18F46J53 18F46K20 18F46K22 18F46K80
18F47J13 18F47J53
18F63J11 18F63J90
18F64J11 18F64J90
18F65J10 18F65J11 18F65J15 18F65J50 18F65J90 18F65J94 18F65K22 18F65K80 18F65K90
18F66J10 18F66J11 18F66J15 18F66J16 18F66J50 18F66J55 18F66J60 18F66J65
18F66J90 18F66J93 18F66J94 18F66J99 18F66K22 18F66K80 18F66K90
18F67J10 18F67J11 18F67J50 18F67J60 18F67J90 18F67J93 18F67J94 18F67K22 18F67K90
18F83J11 18F83J90
18F84J11 18F84J90
18F85J10 18F85J11 18F85J15 18F85J50 18F85J90 18F85J94 18F85K22 18F85K90
18F86J10 18F86J11 18F86J15 18F86J16 18F86J50 18F86J55 18F86J60 18F86J65
18F86J72 18F86J90 18F86J93 18F86J94 18F86J99 18F86K22 18F86K90
18F87J10 18F87J11 18F87J50 18F87J60 18F87J72 18F87J90 18F87J93 18F87J94 18F87K22 18F87K90
18F95J94 18F96J60 18F96J65 18F96J94 18F96J99
18F97J60 18F97J94
18F242 18F248 18F252 18F258
18F442 18F448 18F452 18F458
18F1220 18F1230
18F1320 18F1330
18F2220 18F2221
18F2320 18F2321 18F2331
18F2410 18F2420 18F2423 18F2431 18F2439 18F2450 18F2455 18F2458 18F2480
18F2510 18F2515 18F2520 18F2523 18F2525 18F2539 18F2550 18F2553 18F2580 18F2585
18F2610 18F2620 18F2680 18F2682 18F2685
18F4220 18F4221
18F4320 18F4321 18F4331
18F4410 18F4420 18F4423 18F4431 18F4439 18F4450 18F4455 18F4458 18F4480
18F4510 18F4515 18F4520 18F4523 18F4525 18F4539 18F4550 18F4553 18F4580 18F4585
18F4610 18F4620 18F4680 18F4682 18F4685
18F6310 18F6390 18F6393
18F6410 18F6490 18F6493
18F6520 18F6525 18F6527 18F6585
18F6620 18F6621 18F6622 18F6627 18F6628 18F6680
18F6720 18F6722 18F6723
18F8310 18F8390 18F8393
18F8410 18F8490 18F8493
18F8520 18F8525 18F8527 18F8585
18F8620 18F8621 18F8622 18F8627 18F8628 18F8680
18F8720 18F8722 18F8723
18LF13K22 18LF13K50
18LF14K22 18LF14K50
18LF23K22 18LF24J10 18LF24J11 18LF24J50 18LF24K22 18LF24K50
18LF25J10 18LF25J11 18LF25J50 18LF25K22 18LF25K50 18LF25K80
18LF26J11 18LF26J13 18LF26J50 18LF26J53 18LF26K22 18LF26K80
18LF27J13 18LF27J53
18LF43K22
18LF44J10 18LF44J11 18LF44J50 18LF44K22
18LF45J10 18LF45J11 18LF45J50 18LF45K22 18LF45K50 18LF45K80
18LF46J11 18LF46J13 18LF46J50 18LF46J53 18LF46K22 18LF46K80
18LF47J13 18LF47J53

83

4.7. THE PIC16 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

18LF65K80
18LF66K80
18LF242 18LF248 18LF252 18LF258
18LF442 18LF448 18LF452 18LF458
18LF1220 18LF1230
18LF1320 18LF1330
18LF2220 18LF2221
18LF2320 18LF2321 18LF2331
18LF2410 18LF2420 18LF2423 18LF2431 18LF2439 18LF2450 18LF2455 18LF2458 18LF2480
18LF2510 18LF2515 18LF2520 18LF2523 18LF2525 18LF2539 18LF2550 18LF2553 18LF2580 18LF2585
18LF2610 18LF2620 18LF2680 18LF2682 18LF2685
18LF4220 18LF4221
18LF4320 18LF4321 18LF4331
18LF4410 18LF4420 18LF4423 18LF4431 18LF4439 18LF4450 18LF4455 18LF4458 18LF4480
18LF4510 18LF4515 18LF4520 18LF4523 18LF4525 18LF4539 18LF4550 18LF4553 18LF4580 18LF4585
18LF4610 18LF4620 18LF4680 18LF4682 18LF4685
18LF6310 18LF6390 18LF6393
18LF6410 18LF6490 18LF6493
18LF6520 18LF6525 18LF6527 18LF6585
18LF6620 18LF6621 18LF6622 18LF6627 18LF6628 18LF6680
18LF6720 18LF6722 18LF6723
18LF8310 18LF8390 18LF8393
18LF8410 18LF8490 18LF8493
18LF8520 18LF8525 18LF8527 18LF8585
18LF8620 18LF8621 18LF8622 18LF8627 18LF8628 18LF8680
18LF8720 18LF8722 18LF8723

An up-to-date list of supported devices is also available via ’sdcc -mpic16 -plist’.

4.7.1 Global Options
PIC16 port supports the standard command line arguments as supposed, with the exception of certain cases that
will be mentioned in the following list:

--callee-saves See --all-callee-saves

--use-non-free Make non-free device headers and libraries available in the compiler’s search paths (implicit -I and
-L options).

4.7.2 Port Specific Options
The port specific options appear after the global options in the sdcc --help output.

4.7.2.1 Code Generation Options

These options influence the generated assembler code.

--pstack-model=[model] Used in conjunction with the command above. Defines the stack model to be used, valid
stack models are:

small Selects small stack model. 8 bit stack and frame pointers. Supports 256 bytes stack size.

large Selects large stack model. 16 bit stack and frame pointers. Supports 65536 bytes stack size.

--pno-banksel Do not generate BANKSEL assembler directives.

--extended Enable extended instruction set/literal offset addressing mode. Use with care!

84

4.7. THE PIC16 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

4.7.2.2 Optimization Options

--obanksel=n Set optimization level for inserting BANKSELs.

0 no optimization

1 checks previous used register and if it is the same then does not emit BANKSEL, accounts only
for labels.

2 tries to check the location of (even different) symbols and removes BANKSELs if they are in the
same bank.
Important: There might be problems if the linker script has data sections across bank borders!

--denable-peeps Force the usage of peepholes. Use with care.

--no-optimize-goto Do not use (conditional) BRA instead of GOTO.

--optimize-cmp Try to optimize some compares.

--optimize-df Analyze the dataflow of the generated code and improve it.

4.7.2.3 Assembling Options

--asm= Sets the full path and name of an external assembler to call.

--mplab-comp MPLAB compatibility option. Currently only suppresses special gpasm directives.

4.7.2.4 Linking Options

--link= Sets the full path and name of an external linker to call.

--preplace-udata-with=[kword] Replaces the default udata keyword for allocating unitialized data variables with
[kword]. Valid keywords are: "udata_acs", "udata_shr", "udata_ovr".

--ivt-loc=n Place the interrupt vector table at address n. Useful for bootloaders.

--nodefaultlibs Do not link default libraries when linking.

--use-crt= Use a custom run-time module instead of the default (crt0i).

--no-crt Don’t link the default run-time modules

4.7.2.5 Debugging Options

Debugging options enable extra debugging information in the output files.

--debug-xtra Similar to --debug, but dumps more information.

--debug-ralloc Force register allocator to dump <source>.d file with debugging information. <source> is the name
of the file being compiled.

--pcode-verbose Enable pcode debugging information in translation.

--calltree Dump call tree in .calltree file.

--gstack Trace push/pops for stack pointer overflow.

85

4.7. THE PIC16 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

4.7.3 Environment Variables
There is a number of environmental variables that can be used when running SDCC to enable certain optimiza-
tions or force a specific program behaviour. these variables are primarily for debugging purposes so they can be
enabled/disabled at will.

Currently there is only two such variables available:

OPTIMIZE_BITFIELD_POINTER_GET When this variable exists, reading of structure bit-fields is optimized
by directly loading FSR0 with the address of the bit-field structure. Normally SDCC will cast the bit-field
structure to a bit-field pointer and then load FSR0. This step saves data ram and code space for functions
that make heavy use of bit-fields. (i.e., 80 bytes of code space are saved when compiling malloc.c with this
option).

NO_REG_OPT Do not perform pCode registers optimization. This should be used for debugging purposes. If
bugs in the pcode optimizer are found, users can benefit from temporarily disabling the optimizer until the
bug is fixed.

4.7.4 Preprocessor Macros
PIC16 port defines the following preprocessor macros while translating a source.

Macro Description
__SDCC_pic16 Port identification

pic18fxxxx MCU Identification. xxxx is the microcontrol identification number, i.e. 452, 6620, etc
__18Fxxxx MCU Identification (same as above)

STACK_MODEL_nnn nnn = SMALL or LARGE respectively according to the stack model used

In addition the following macros are defined when calling assembler:

Macro Description
__18Fxxxx MCU Identification. xxxx is the microcontrol identification number, i.e. 452, 6620, etc

__SDCC_MODEL_nnn nnn = SMALL or LARGE respectively according to the memory model used for SDCC
STACK_MODEL_nnn nnn = SMALL or LARGE respectively according to the stack model used

4.7.5 Directories
PIC16 port uses the following directories for searching header files and libraries.

Directory Description Target Command prefix
PREFIX/sdcc/include/pic16 PIC16 specific headers Compiler -I

PREFIX/sdcc/lib/pic16 PIC16 specific libraries Linker -L

If the --use-non-free command line option is specified, non-free directories are searched:

Directory Description Target Command prefix
PREFIX/sdcc/non-free/include/pic16 PIC16 specific non-free headers Compiler -I

PREFIX/sdcc/non-free/lib/pic16 PIC16 specific non-free libraries Linker -L

4.7.6 Pragmas
The PIC16 port currently supports the following pragmas:

86

4.7. THE PIC16 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

stack This forces the code generator to initialize the stack & frame pointers at a specific address. This is an ad
hoc solution for cases where no STACK directive is available in the linker script or gplink is not instructed to
create a stack section.
The stack pragma should be used only once in a project. Multiple pragmas may result in indeterminate
behaviour of the program.2

The format is as follows:

#pragma stack bottom_address [stack_size]

bottom_address is the lower bound of the stack section. The stack pointer initially will point at address
(bottom_address+stack_size-1).

Example:
/* initializes stack of 100 bytes at RAM address 0x200 */
#pragma stack 0x200 100

If the stack_size field is omitted then a stack is created with the default size of 64. This size might be enough for
most programs, but its not enough for operations with deep function nesting or excessive stack usage.

code Force a function to a static FLASH address.

Example:
/* place function test_func at 0x4000 */
#pragma code test_func 0x4000

library instructs the linker to use a library module.
Usage:

#pragma library module_name

module_name can be any library or object file (including its path). Note that there are four reserved keywords
which have special meaning. These are:

Keyword Description Module to link
ignore ignore all library pragmas (none)

c link the C library libc18f.lib
math link the Math libarary libm18f.lib

io link the I/O library libio18f*.lib
debug link the debug library libdebug.lib

* is the device number, i.e. 452 for PIC18F452 MCU.

This feature allows for linking with specific libraries without having to explicit name them in the command line.
Note that the IGNORE keyword will reject all modules specified by the library pragma.

udata The pragma udata instructs the compiler to emit code so that linker will place a variable at a specific memory
bank.

Example:
/* places variable foo at bank2 */
#pragma udata bank2 foo
char foo;

In order for this pragma to work extra SECTION directives should be added in the .lkr script. In the following
example a sample .lkr file is shown:

2The old format (ie. #pragma stack 0x5ff) is deprecated and will cause the stack pointer to cross page boundaries (or even exceed the
available data RAM) and crash the program. Make sure that stack does not cross page boundaries when using the SMALL stack model.

87

4.7. THE PIC16 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

// Sample linker script for the PIC18F452 processor
LIBPATH .
CODEPAGE NAME=vectors START=0x0 END=0x29 PROTECTED
CODEPAGE NAME=page START=0x2A END=0x7FFF
CODEPAGE NAME=idlocs START=0x200000 END=0x200007 PROTECTED
CODEPAGE NAME=config START=0x300000 END=0x30000D PROTECTED
CODEPAGE NAME=devid START=0x3FFFFE END=0x3FFFFF PROTECTED
CODEPAGE NAME=eedata START=0xF00000 END=0xF000FF PROTECTED
ACCESSBANK NAME=accessram START=0x0 END=0x7F
DATABANK NAME=gpr0 START=0x80 END=0xFF
DATABANK NAME=gpr1 START=0x100 END=0x1FF
DATABANK NAME=gpr2 START=0x200 END=0x2FF
DATABANK NAME=gpr3 START=0x300 END=0x3FF
DATABANK NAME=gpr4 START=0x400 END=0x4FF
DATABANK NAME=gpr5 START=0x500 END=0x5FF
ACCESSBANK NAME=accesssfr START=0xF80 END=0xFFF PROTECTED
SECTION NAME=CONFIG ROM=config
SECTION NAME=bank0 RAM=gpr0 # these SECTION directives
SECTION NAME=bank1 RAM=gpr1 # should be added to link
SECTION NAME=bank2 RAM=gpr2 # section name ’bank?’ with
SECTION NAME=bank3 RAM=gpr3 # a specific DATABANK name
SECTION NAME=bank4 RAM=gpr4
SECTION NAME=bank5 RAM=gpr5

The linker will recognise the section name set in the pragma statement and will position the variable at the memory
bank set with the RAM field at the SECTION line in the linker script file.

config The pragma config instructs the compiler to emit config directive.
The format is as follows:

#pragma config setting=value [, setting=value]

Multiple settings may be defined on a single line, separated by commas. Settings for a single configuration byte
may also be defined on separate lines.

Example:
#pragma config CP0=OFF,OSCS=ON,OSC=LP,BOR=ON,BORV=25,WDT=ON,WDTPS=128,CCP2MUX=ON
#pragma config STVR=ON

4.7.7 Header Files and Libraries
Pic device specific header and c source files are automatically generated from MPLAB include files, which are
published by Microchip with a special requirement that they are only to be used with authentic Microchip devices.
This requirement prevents to publish generated header and c source files under the GPL compatible license, so they
are located in the non-free directory (see section 2.3). In order to include them in include and library search paths,
the --use-non-free command line option should be defined.

NOTE: the compiled code, which use non-free pic device specific libraries, is not GPL compatible!

4.7.8 Header Files
There is one main header file that can be included to the source files using the pic16 port. That file is the
pic18fregs.h. This header file contains the definitions for the processor special registers, so it is necessary if
the source accesses them. It can be included by adding the following line in the beginning of the file:

#include <pic18fregs.h>

The specific microcontroller is selected within the pic18fregs.h automatically, so the same source can be used with
a variety of devices.

88

4.7. THE PIC16 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

4.7.9 Libraries
The libraries that PIC16 port depends on are the microcontroller device libraries which contain the symbol defini-
tions for the microcontroller special function registers. These libraries have the format pic18fxxxx.lib, where xxxx
is the microcontroller identification number. The specific library is selected automatically by the compiler at link
stage according to the selected device.
Libraries are created with gplib which is part of the gputils package http://sourceforge.net/projects/
gputils.

Building the libraries

Before using SDCC/pic16 there are some libraries that need to be compiled. This process is done automatically if
gputils are found at SDCC’s compile time. Should you require to rebuild the pic16 libraries manually (e.g. in order
to enable output of float values via printf(), see below), these are the steps required to do so under Linux or
Mac OS X (cygwin might work as well, but is untested):

cd device/lib/pic16
./configure.gnu
cd ..
make model-pic16
su -c ’make install’ # install the libraries, you need the root password
cd ../..

If you need to install the headers too, do:

cd device/include
su -c ’make install’ # install the headers, you need the root password

Output of float values via printf()

The library is normally built without support for displaying float values, only <NO FLOAT> will appear instead of
the value. To change this, rebuild the library as stated above, but call ./configure.gnu --enable-floats
instead of just ./configure.gnu. Also make sure that at least libc/stdio/vfprintf.c is actually re-
compiled, e.g. by touching it after the configure run or deleting its .o file.

The more common approach of compiling vfprintf.c manually with -DUSE_FLOATS=1 should also
work, but is untested.

4.7.10 Adding New Devices to the Port
Adding support for a new 16 bit PIC MCU requires the following steps:

1. Create picDEVICE.c and picDEVICE.h from pDEVICE.inc using
perl /path/to/sdcc/support/scripts/inc2h-pic16.pl \
/path/to/gputils/header/pDEVICE.inc

2. mv picDEVICE.h /path/to/sdcc/device/non-free/include/pic16

3. mv picDEVICE.c /path/to/sdcc/device/non-free/lib/pic16/libdev

4. Either

(a) add the new device to /path/to/sdcc/device/lib/pic16/libio/*.ignore to suppress
building any of the I/O libraries for the new device3, or

(b) add the device (family) to /path/to/sdcc/support/scripts/pic18fam-h-gen.pl
to assign I/O styles, run the pic18fam-h-gen.pl script to generate pic18fam.h.gen,
replace your existing pic18fam.h with the generated file, and (if required) implement new
I/O styles in /path/to/sdcc/device/include/pic16/{adc,i2c,usart}.h and
/path/to/sdcc/device/lib/pic16/libio/*/*.

3In fact, the .ignore files are only used when auto-generating Makefile.am using the .../libio/mkmk.sh script.

89

http://sourceforge.net/projects/gputils
http://sourceforge.net/projects/gputils

4.7. THE PIC16 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

5. Edit /path/to/sdcc/device/include/pic16/pic18fregs.h
The file format is self-explanatory, just add
#elif defined(picDEVICE)
include <picDEVICE.h>
at the right place (keep the file sorted, please).

6. Edit /path/to/sdcc/device/include/pic16devices.txt
Copy and modify an existing entry or create a new one and insert it at the correct place (keep the file sorted,
please).

7. (cd /path/to/sdcc/device/non-free/lib/pic16 && sh update.sh)

8. Recompile the pic16 libraries as described in 4.7.9 or just configure and build sdcc again from scratch (rec-
ommended).

4.7.11 Memory Models
The following memory models are supported by the PIC16 port:

• small model

• large model

Memory model affects the default size of pointers within the source. The sizes are shown in the next table:

Pointer sizes according to memory model small model large model
code pointers 16-bits 24-bits
data pointers 16-bits 16-bits

It is advisable that all sources within a project are compiled with the same memory model. If one wants to
override the default memory model, this can be done by declaring a pointer as far or near. Far selects large
memory model’s pointers, while near selects small memory model’s pointers.

The standard device libraries (see 4.7.8) contain no reference to pointers, so they can be used with both memory
models.

4.7.12 Stack
The stack implementation for the PIC16 port uses two indirect registers, FSR1 and FSR2.

FSR1 is assigned as stack pointer

FSR2 is assigned as frame pointer

The following stack models are supported by the PIC16 port

• SMALL model

• LARGE model

SMALL model means that only the FSRxL byte is used to access stack and frame, while LARGE uses both FSRxL
and FSRxH registers. The following table shows the stack/frame pointers sizes according to stack model and the
maximum space they can address:

Stack & Frame pointer sizes according to stack model small large
Stack pointer FSR1 8-bits 16-bits
Frame pointer FSR2 8-bits 16-bits

LARGE stack model is currently not working properly throughout the code generator. So its use is not advised.
Also there are some other points that need special care:

1. Do not create stack sections with size more than one physical bank (that is 256 bytes)

2. Stack sections should no cross physical bank limits (i.e. #pragma stack 0x50 0x100)

These limitations are caused by the fact that only FSRxL is modified when using SMALL stack model, so no more
than 256 bytes of stack can be used. This problem will disappear after LARGE model is fully implemented.

90

4.7. THE PIC16 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

4.7.13 Functions
In addition to the standard SDCC function keywords, PIC16 port makes available two more:

__wparam Use the WREG to pass one byte of the first function argument. This improves speed but you may not
use this for functions with arguments that are called via function pointers, otherwise the first byte of the first
parameter will get lost. Usage:

void func_wparam(int a) __wparam
{

/* WREG hold the lower part of a */
/* the high part of a is stored in FSR2+2 (or +3 for large stack model) */

...
}

__shadowregs When entering/exiting an ISR, it is possible to take advantage of the PIC18F hardware shadow
registers which hold the values of WREG, STATUS and BSR registers. This can be done by adding the
keyword __shadowregs before the __interrupt keyword in the function’s header.

void isr_shadow(void) __shadowregs __interrupt (1)
{
...
}

__shadowregs instructs the code generator not to store/restore WREG, STATUS, BSR when entering/exiting the
ISR.

4.7.14 Function return values
Return values from functions are placed to the appropriate registers following a modified Microchip policy opti-
mized for SDCC. The following table shows these registers:

size destination register
8 bits WREG
16 bits PRODL:WREG
24 bits PRODH:PRODL:WREG
32 bits FSR0L:PRODH:PRODL:WREG

>32 bits on stack, FSR0 points to the beginning

4.7.15 Interrupts
An interrupt service routine (ISR) is declared using the __interrupt keyword.

void isr(void) __interrupt (n)
{
...
}

n is the interrupt number, which for PIC18F devices can be:

n Interrupt Vector Interrupt Vector Address
0 RESET vector 0x000000
1 HIGH priority interrupts 0x000008
2 LOW priority interrupts 0x000018

When generating assembly code for ISR the code generator places a GOTO instruction at the Interrupt Vector
Address which points at the generated ISR. This single GOTO instruction is part of an automatically generated
interrupt entry point function. The actual ISR code is placed as normally would in the code space. Upon interrupt
request, the GOTO instruction is executed which jumps to the ISR code. When declaring interrupt functions as

91

4.7. THE PIC16 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

_naked this GOTO instruction is not generated. The whole interrupt functions is therefore placed at the Interrupt
Vector Address of the specific interrupt. This is not a problem for the LOW priority interrupts, but it is a problem
for the RESET and the HIGH priority interrupts because code may be written at the next interrupt’s vector address
and cause indeterminate program behaviour if that interrupt is raised.4

n may be omitted. This way a function is generated similar to an ISR, but it is not assigned to any interrupt.
When entering an interrupt, currently the PIC16 port automatically saves the following registers:

• WREG

• STATUS

• BSR

• PROD (PRODL and PRODH)

• FSR0 (FSR0L and FSR0H)

These registers are restored upon return from the interrupt routine.5

4.7.16 Generic Pointers
Generic pointers are implemented in PIC16 port as 3-byte (24-bit) types. There are 3 types of generic pointers
currently implemented data, code and eeprom pointers. They are differentiated by the value of the 7th and 6th bits
of the upper byte:

pointer type 7th bit 6th bit rest of the pointer description
data 1 0 uuuuuu uuuuxxxx xxxxxxxx a 12-bit data pointer in data RAM memory
code 0 0 uxxxxx xxxxxxxx xxxxxxxx a 21-bit code pointer in FLASH memory

eeprom 0 1 uuuuuu uuuuuuxx xxxxxxxx a 10-bit eeprom pointer in EEPROM memory
(unimplemented) 1 1 xxxxxx xxxxxxxx xxxxxxxx unimplemented pointer type

Generic pointer are read and written with a set of library functions which read/write 1, 2, 3, 4 bytes.

4.7.17 Configuration Bits
Configuration bits (also known as fuses) can be configured using one of two methods:

• using #pragma config (see section 4.7.6), which is a preferred method for the new code. Example:

#pragma config CP0=OFF,OSCS=ON,OSC=LP,BOR=ON,BORV=25,WDT=ON,WDTPS=128,CCP2MUX=ON
#pragma config STVR=ON

• using ‘__code’ and ‘__at’ modifiers. This method is deprecated. Possible options should be ANDed and
can be found in your processor header file. Example for PIC18F2550:

#include <pic18fregs.h> //Contains config addresses and options

static __code char __at(__CONFIG1L) configword1l =
_USBPLL_CLOCK_SRC_FROM_96MHZ_PLL_2_1L &
_PLLDIV_NO_DIVIDE__4MHZ_INPUT__1L & [...];

static __code char __at(__CONFIG1H) configword1h = [...];
static __code char __at(__CONFIG2L) configword2l = [...];
//More configuration words

Mixing both methods is not allowed and throws an error message ”mixing __CONFIG and CONFIG directives”.
4This is not a problem when

1. this is a HIGH interrupt ISR and LOW interrupts are disabled or not used.

2. when the ISR is small enough not to reach the next interrupt’s vector address.

5NOTE that when the _naked attribute is specified for an interrupt routine, then NO registers are stored or restored.

92

4.7. THE PIC16 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

4.7.18 PIC16 C Libraries
4.7.18.1 Standard I/O Streams

In the stdio.h the type FILE is defined as:

typedef char * FILE;

This type is the stream type implemented I/O in the PIC18F devices. Also the standard input and output streams
are declared in stdio.h:

extern FILE * stdin;
extern FILE * stdout;

The FILE type is actually a generic pointer which defines one more type of generic pointers, the stream pointer.
This new type has the format:

pointer type <7:6> <5> <4> <3:0> rest of the pointer descrption
stream 00 1 0 nnnn uuuuuuuu uuuuuuuu upper byte high nubble is 0x2n, the rest are zeroes

Currently implemented there are 3 types of streams defined:

stream type value module description
STREAM_USART 0x200000UL USART Writes/Reads characters via the USART peripheral
STREAM_MSSP 0x210000UL MSSP Writes/Reads characters via the MSSP peripheral
STREAM_USER 0x2f0000UL (none) Writes/Reads characters via used defined functions

The stream identifiers are declared as macros in the stdio.h header.
In the libc library there exist the functions that are used to write to each of the above streams. These are

__stream_usart_putchar writes a character at the USART stream

__stream_mssp_putchar writes a character at the MSSP stream

putchar dummy function. This writes a character to a user specified manner.

In order to increase performance putchar is declared in stdio.h as having its parameter in WREG (it has the
__wparam keyword). In stdio.h exists the macro PUTCHAR(arg) that defines the putchar function in a user-friendly
way. arg is the name of the variable that holds the character to print. An example follows:

#include <pic18fregs.h>
#include <stdio.h>

PUTCHAR(c)
{

PORTA = c; /* dump character c to PORTA */
}

void main(void)
{

stdout = STREAM_USER; /* this is not necessary, since stdout points

* by default to STREAM_USER */
printf (”This is a printf test\n”);

}

93

4.7. THE PIC16 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

4.7.18.2 Printing functions

PIC16 contains an implementation of the printf-family of functions. There exist the following functions:

extern unsigned int sprintf(char *buf, char *fmt, ...);
extern unsigned int vsprintf(char *buf, char *fmt, va_list ap);
extern unsigned int printf(char *fmt, ...);
extern unsigned int vprintf(char *fmt, va_lista ap);
extern unsigned int fprintf(FILE *fp, char *fmt, ...);
extern unsigned int vfprintf(FILE *fp, char *fmt, va_list ap);

For sprintf and vsprintf buf should normally be a data pointer where the resulting string will be placed. No range
checking is done so the user should allocate the necessary buffer. For fprintf and vfprintf fp should be a stream
pointer (i.e. stdout, STREAM_MSSP, etc...).

4.7.18.3 Signals

The PIC18F family of microcontrollers supports a number of interrupt sources. A list of these interrupts is shown
in the following table:

signal name description signal name description
SIG_RB PORTB change interrupt SIG_EE EEPROM/FLASH write complete interrupt
SIG_INT0 INT0 external interrupt SIG_BCOL Bus collision interrupt
SIG_INT1 INT1 external interrupt SIG_LVD Low voltage detect interrupt
SIG_INT2 INT2 external interrupt SIG_PSP Parallel slave port interrupt
SIG_CCP1 CCP1 module interrupt SIG_AD AD convertion complete interrupt
SIG_CCP2 CCP2 module interrupt SIG_RC USART receive interrupt
SIG_TMR0 TMR0 overflow interrupt SIG_TX USART transmit interrupt
SIG_TMR1 TMR1 overflow interrupt SIG_MSSP SSP receive/transmit interrupt
SIG_TMR2 TMR2 matches PR2 interrupt
SIG_TMR3 TMR3 overflow interrupt

The prototypes for these names are defined in the header file signal.h.
In order to simplify signal handling, a number of macros is provided:

DEF_INTHIGH(name) begin the definition of the interrupt dispatch table for high priority interrupts. name is the
function name to use.

DEF_INTLOW(name) begin the definition of the interrupt dispatch table for low priority interrupt. name is the
function name to use.

DEF_HANDLER(sig,handler) define a handler for signal sig.

END_DEF end the declaration of the dispatch table.

Additionally there are two more macros to simplify the declaration of the signal handler:

SIGHANDLER(handler) this declares the function prototype for the handler function.

SIGHANDLERNAKED(handler) same as SIGHANDLER() but declares a naked function.

An example of using the macros above is shown below:

#include <pic18fregs.h>
#include <signal.h>

DEF_INTHIGH(high_int)
DEF_HANDLER(SIG_TMR0, _tmr0_handler)
DEF_HANDLER(SIG_BCOL, _bcol_handler)
END_DEF

94

4.8. THE MOS6502 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

SIGHANDLER(_tmr0_handler)
{

/* action to be taken when timer 0 overflows */
}

SIGHANDLERNAKED(_bcol_handler)
{

__asm
/* action to be taken when bus collision occurs */
retfie

__endasm;
}

NOTES: Special care should be taken when using the above scheme:

• do not place a colon (;) at the end of the DEF_* and END_DEF macros.

• when declaring SIGHANDLERNAKED handler never forget to use retfie for proper returning.

4.7.19 PIC16 Port – Tips
Here you can find some general tips for compiling programs with SDCC/pic16.

4.7.19.1 Stack size

The default stack size (that is 64 bytes) probably is enough for many programs. One must take care that when there
are many levels of function nesting, or there is excessive usage of stack, its size should be extended. An example of
such a case is the printf/sprintf family of functions. If you encounter problems like not being able to print integers,
then you need to set the stack size around the maximum (256 for small stack model). The following diagram shows
what happens when calling printf to print an integer:

printf () --> ltoa () --> ultoa () --> divschar ()

It is should be understood that stack is easily consumed when calling complicated functions. Using command line
arguments like --fomit-frame-pointer might reduce stack usage by not creating unnecessary stack frames. Other
ways to reduce stack usage may exist.

4.7.20 Known Bugs
4.7.20.1 Extended Instruction Set

The PIC16 port emits code which is incompatible with the extended instruction set available with many newer
devices. Make sure to always explicitly disable it, usually using:

• #pragma config XINST=OFF

or deprecated:

• static __code char __at(__CONFIG4L) conf4l = /* more flags & */ _XINST_OFF_4L;

Some devices (namely 18f2455, 18f2550, 18f4455, and 18f4550) use _ENHCPU_OFF_4L instead of
_XINST_OFF_4L.

4.7.20.2 Regression Tests

The PIC16 port currently passes most but not all of the tests in SDCC’s regression test suite (see section 7.8), thus
no automatic regression tests are currently performed for the PIC16 target.

4.8 The MOS6502 port
The mos6502 port can target the original MOS Technology NMOS 6502 , and the CMOS Rockwell/WDC 65C02
with enhanched instruction set.

95

4.8. THE MOS6502 PORT CHAPTER 4. NOTES ON SUPPORTED PROCESSORS

4.8.1 Startup Code
On the MOS6502 the startup code is inserted by linking with crt0.rel which is generated from
sdcc/device/lib/mos6502/crt0.s. If you need a different startup code you can use the compiler option --no-
std-crt0 and provide your own crt0.rel. When using a custom crt0.rel it needs to be listed first when linking.

96

Chapter 5

Debugging

There are several approaches to debugging your code. This chapter is meant to show your options and to give
detail on some of them:

When writing your code:

• write your code with debugging in mind (avoid duplicating code, put conceptually similar variables into
structs, use structured code, have strategic points within your code where all variables are consistent, ...)

• run a syntax-checking tool like splint (see --more-pedantic 3.3.4) over the code.

• for the high level code use a C-compiler (like f.e. GCC) to compile run and debug the code on your host. See
(see --more-pedantic 3.3.4) on how to handle syntax extensions like __xdata, __at(), ...

• use another C-compiler to compile code for your target. Always an option but not recommended:) And not
very likely to help you. If you seriously consider walking this path you should at least occasionally check
portability of your code. Most commercial compiler vendors will offer an evaluation version so you can test
compile your code or snippets of your code.

Debugging on a simulator:

• there is a separate section about SDCDB (section 5.1) below.

• or (8051 specific) use a free open source/commercial simulator which interfaces to the AOMF file (see 3.2.1)
optionally generated by SDCC.

Debugging On-target:

• use a MCU port pin to serially output debug data to the RS232 port of your host. You’ll probably want some
level shifting device typically involving a MAX232 or similar IC. If the hardware serial port of the MCU is
not available search for ’Software UART’ in your favourite search machine.

• use an on-target monitor. In this context a monitor is a small program which usually accepts commands
via a serial line and allows to set program counter, to single step through a program and read/write memory
locations. For the 8051 good examples of monitors are paulmon and cmon51 (see section 6.5).

• toggle MCU port pins at strategic points within your code and use an oscilloscope. A digital oscilloscope
with deep trace memory is really helpful especially if you have to debug a realtime application. If you need to
monitor more pins than your oscilloscope provides you can sometimes get away with a small R-2R network.
On a single channel oscilloscope you could for example monitor 2 push-pull driven pins by connecting one
via a 10 kΩ resistor and the other one by a 5 kΩ resistor to the oscilloscope probe (check output drive
capability of the pins you want to monitor). If you need to monitor many more pins a logic analyzer will be
handy.

• use an ICE (in circuit emulator). Usually very expensive. And very nice to have too. And usually locks you
(for years...) to the devices the ICE can emulate.

97

5.1. DEBUGGING WITH SDCDB CHAPTER 5. DEBUGGING

• use a remote debugger. In most 8-bit systems the symbol information is not available on the target, and a
complete debugger is too bulky for the target system. Therefore usually a debugger on the host system con-
nects to an on-target debugging stub which accepts only primitive commands.
Terms to enter into your favourite search engine could be ’remote debugging’, ’gdb stub’ or ’inferior debug-
ger’. (is there one?)

• use an on target hardware debugger. Some of the more modern MCUs include hardware support for setting
break points and monitoring/changing variables by using dedicated hardware pins. This facility doesn’t
require additional code to run on the target and usually doesn’t affect runtime behaviour until a breakpoint is
hit. For the mcs51 most hardware debuggers use the AOMF file (see 3.2.1) as input file.

Last not least:

• if you are not familiar with any of the following terms you’re likely to run into problems rather sooner than
later: volatile, atomic, memory map, overlay. As an embedded programmer you have to know them so why
not look them up before you have problems?)

• tell someone else about your problem (actually this is a surprisingly effective means to hunt down the bug
even if the listener is not familiar with your environment). As ’failure to communicate’ is probably one of
the job-induced deformations of an embedded programmer this is highly encouraged.

5.1 Debugging with SDCDB
SDCC is distributed with a source level debugger. The debugger uses a command line interface, the command
repertoire of the debugger has been kept as close to gdb (the GNU debugger) as possible. The configuration and
build process is part of the standard compiler installation, which also builds and installs the debugger in the target
directory specified during configuration. The debugger allows you debug BOTH at the C source and at the ASM
source level.

5.1.1 Compiling for Debugging
The --debug option must be specified for all files for which debug information is to be generated. The compiler
generates a .adb file for each of these files. The linker creates the .cdb file from the .adb files and the address
information. This .cdb is used by the debugger.

5.1.2 How the Debugger Works
When the --debug option is specified the compiler generates extra symbol information some of which are put into
the assembler source and some are put into the .adb file. Then the linker creates the .cdb file from the individual
.adb files with the address information for the symbols. The debugger reads the symbolic information generated by
the compiler & the address information generated by the linker. It uses the SIMULATOR (Daniel’s S51) to execute
the program, the program execution is controlled by the debugger. When a command is issued for the debugger, it
translates it into appropriate commands for the simulator. (Currently SDCDM only connects to the simulator but
newcdb at http://ec2drv.sourceforge.net/ is an effort to connect directly to the hardware.)

5.1.3 Starting the Debugger SDCDB
The debugger can be started using the following command line. (Assume the file you are debugging has the file
name foo).

sdcdb foo

The debugger will look for the following files.

• foo.c - the source file.

• foo.cdb - the debugger symbol information file.

• foo.ihx - the Intel hex format object file.

98

http://ec2drv.sourceforge.net/

5.1. DEBUGGING WITH SDCDB CHAPTER 5. DEBUGGING

5.1.4 SDCDB Command Line Options
• --directory=<source file directory> this option can used to specify the directory search list. The debugger

will look into the directory list specified for source, cdb & ihx files. The items in the directory list must be
separated by ’:’, e.g. if the source files can be in the directories /home/src1 and /home/src2, the --directory
option should be --directory=/home/src1:/home/src2. Note there can be no spaces in the option.

• -cd <directory> - change to the <directory>.

• -fullname - used by GUI front ends.

• -cpu <cpu-type> - this argument is passed to the simulator please see the simulator docs for details.

• -X <Clock frequency > this options is passed to the simulator please see the simulator docs for details.

• -s <serial port file> passed to simulator see the simulator docs for details.

• -S <serial in,out> passed to simulator see the simulator docs for details.

• -k <port number> passed to simulator see the simulator docs for details.

5.1.5 SDCDB Debugger Commands
As mentioned earlier the command interface for the debugger has been deliberately kept as close the GNU debugger
gdb, as possible. This will help the integration with existing graphical user interfaces (like ddd, xxgdb or xemacs)
existing for the GNU debugger. If you use a graphical user interface for the debugger you can skip this section.

break [line | file:line | function | file:function]

Set breakpoint at specified line or function:

sdcdb>break 100
sdcdb>break foo.c:100
sdcdb>break funcfoo
sdcdb>break foo.c:funcfoo

clear [line | file:line | function | file:function]

Clear breakpoint at specified line or function:

sdcdb>clear 100
sdcdb>clear foo.c:100
sdcdb>clear funcfoo
sdcdb>clear foo.c:funcfoo

continue

Continue program being debugged, after breakpoint.

finish

Execute till the end of the current function.

delete [n]

Delete breakpoint number ’n’. If used without any option clear ALL user defined break points.

99

5.1. DEBUGGING WITH SDCDB CHAPTER 5. DEBUGGING

info [break | stack | frame | registers]

• info break - list all breakpoints

• info stack - show the function call stack.

• info frame - show information about the current execution frame.

• info registers - show content of all registers.

step

Step program until it reaches a different source line. Note: pressing <return> repeats the last command.

next

Step program, proceeding through subroutine calls.

run

Start debugged program.

ptype variable

Print type information of the variable.

print variable

print value of variable.

file filename

load the given file name. Note this is an alternate method of loading file for debugging.

frame

print information about current frame.

set srcmode

Toggle between C source & assembly source.

! simulator command

Send the string following ’!’ to the simulator, the simulator response is displayed. Note the debugger does not
interpret the command being sent to the simulator, so if a command like ’go’ is sent the debugger can loose its
execution context and may display incorrect values.

quit

"Watch me now. Iam going Down. My name is Bobby Brown"

100

5.1. DEBUGGING WITH SDCDB CHAPTER 5. DEBUGGING

5.1.6 Interfacing SDCDB with DDD
The portable network graphics File http://sdcc.sourceforge.net/wiki_images/ddd_example.png shows a
screenshot of a debugging session with DDD (Unix only) on a simulated 8032. The debugging session might not
run as smoothly as the screenshot suggests. The debugger allows setting of breakpoints, displaying and changing
variables, single stepping through C and assembler code.
The source was compiled with

sdcc --debug ddd_example.c

and DDD was invoked with

ddd -debugger "sdcdb -cpu 8032 ddd_example"

5.1.7 Interfacing SDCDB with XEmacs
Two files (in emacs lisp) are provided for the interfacing with XEmacs, sdcdb.el and sdcdbsrc.el. These two files
can be found in the $(prefix)/bin directory after the installation is complete. These files need to be loaded into
XEmacs for the interface to work. This can be done at XEmacs startup time by inserting the following into your
’.xemacs’ file (which can be found in your HOME directory):

(load-file sdcdbsrc.el)

.xemacs is a lisp file so the () around the command is REQUIRED. The files can also be loaded dynami-
cally while XEmacs is running, set the environment variable ’EMACSLOADPATH’ to the installation bin directory
(<installdir>/bin), then enter the following command ESC-x load-file sdcdbsrc. To start the interface enter the
following command:

ESC-x sdcdbsrc

You will prompted to enter the file name to be debugged.

The command line options that are passed to the simulator directly are bound to default values in the file
sdcdbsrc.el. The variables are listed below, these values maybe changed as required.

• sdcdbsrc-cpu-type ’51

• sdcdbsrc-frequency ’11059200

• sdcdbsrc-serial nil

The following is a list of key mapping for the debugger interface.

;; Current Listing ::
;;key binding Comment
;;--- ------- -------
;;
;; n sdcdb-next-from-src SDCDB next command
;; b sdcdb-back-from-src SDCDB back command
;; c sdcdb-cont-from-src SDCDB continue command
;; s sdcdb-step-from-src SDCDB step command
;; ? sdcdb-whatis-c-sexp SDCDB ptypecommand for data
at
;; buffer point
;; x sdcdbsrc-delete SDCDB Delete all breakpoints
if no arg
;; given or delete arg (C-u
arg x)
;; m sdcdbsrc-frame SDCDB Display current frame

101

http://sdcc.sourceforge.net/wiki_images/ddd_example.png

5.2. DEBUGGING WITH OTHER DEBUGGERS (E.G. GDB): ELF / DWARF CHAPTER 5. DEBUGGING

if no arg,
;; given or display frame arg
;; buffer point
;; ! sdcdbsrc-goto-sdcdb Goto the SDCDB output buffer
;; p sdcdb-print-c-sexp SDCDB print command for data
at
;; buffer point
;; g sdcdbsrc-goto-sdcdb Goto the SDCDB output buffer
;; t sdcdbsrc-mode Toggles Sdcdbsrc mode (turns
it off)
;;
;; C-c C-f sdcdb-finish-from-src SDCDB finish command
;;
;; C-x SPC sdcdb-break Set break for line with
point
;; ESC t sdcdbsrc-mode Toggle Sdcdbsrc mode
;; ESC m sdcdbsrc-srcmode Toggle list mode
;;

5.2 Debugging with other debuggers (e.g. GDB): ELF / DWARF
For some ports, SDCC can create ELF binaries with DWARF debug information. This can e.g. be used for on-
target debugging on STM8 using OpenOCD and GDB. To do so, compile with –debug –out-fmt-elf. Note that
–out-fmt-elf needs to be specified both when compiling (to generate the debug info in DWARF rather than CDB
format) and linking (to get an ELF binary instead of Intel Hex).

102

Chapter 6

TIPS

Here are a few guidelines that will help the compiler generate more efficient code, some of the tips are specific to
this compiler others are generally good programming practice.

• Use the smallest data type to represent your data-value. If it is known in advance that the value is going to be
less than 256 then use an ’unsigned char’ instead of a ’short’ or ’int’. Please note, that ANSI C requires both
signed and unsigned chars to be promoted to ’signed int’ before doing any operation. This promotion can be !
omitted, if the result is the same. The effect of the promotion rules together with the sign-extension is often
surprising:

unsigned char uc = 0xfe;
if (uc * uc < 0) /* this is true! */
{

....
}

uc * uc is evaluated as (int) uc * (int) uc = (int) 0xfe * (int) 0xfe = (int)
0xfc04 = -1024.
Another one:

(unsigned char) -12 / (signed char) -3 = ...

No, the result is not 4:

(int) (unsigned char) -12 / (int) (signed char) -3 =
(int) (unsigned char) 0xf4 / (int) (signed char) 0xfd =
(int) 0x00f4 / (int) 0xfffd =
(int) 0x00f4 / (int) 0xfffd =
(int) 244 / (int) -3 =
(int) -81 = (int) 0xffaf;

Don’t complain, that gcc gives you a different result. gcc uses 32 bit ints, while SDCC uses 16 bit ints.
Therefore the results are different.
From ”comp.lang.c FAQ”:

If well-defined overflow characteristics are important and negative values are not, or if you want
to steer clear of sign-extension problems when manipulating bits or bytes, use one of the cor-
responding unsigned types. (Beware when mixing signed and unsigned values in expressions,
though.)
Although character types (especially unsigned char) can be used as "tiny" integers, doing so is
sometimes more trouble than it’s worth, due to unpredictable sign extension and increased code
size.

• Use unsigned when it is known in advance that the value is not going to be negative. This helps especially if
you are doing division or multiplication, bit-shifting or are using an array index.

103

6.1. PORTING CODE FROM OR TO OTHER COMPILERS CHAPTER 6. TIPS

• NEVER jump into a LOOP.

• Declare the variables to be local whenever possible, especially loop control variables (induction).

• Have a look at the assembly listing to get a ”feeling” for the code generation.

6.1 Porting code from or to other compilers
• check whether endianness of the compilers differs and adapt where needed.

• check the device specific header files for compiler specific syntax. Eventually include the file <com-
piler.h> http://svn.code.sf.net/p/sdcc/code/trunk/sdcc/device/include/
mcs51/compiler.h to allow using common header files. (see f.e. cc2510fx.h http://svn.
code.sf.net/p/sdcc/code/trunk/sdcc/device/include/mcs51/cc2510fx.h).

• check whether the startup code contains the correct initialization (watchdog, peripherals).

• check whether the sizes of short, int, long match.

• check if some 16 or 32 bit hardware registers require a specific addressing order (least significant or most
significant byte first) and adapt if needed (first and last relate to time and not to lower/upper memory location
here, so this is not the same as endianness).

• check whether the keyword volatile is used where needed. The compilers might differ in their optimization
characteristics (as different versions of the same compiler might also use more clever optimizations this is
good idea anyway). See section 3.8.1.1.

• check that the compilers are not told to suppress warnings.

• check and convert compiler specific extensions (interrupts, memory areas, pragmas etc.).

• check for differences in type promotion. Especially check for math operations on char or unsigned
char variables. For the sake of C99 compatibility SDCC will probably promote these to int more often
than other compilers. Eventually insert explicit casts to (char) or (unsigned char). Also check that
the ~ operator is not used on bit variables, use the ! operator instead. See sections 6 and 1.5.

• check the assembly code generated for interrupt routines (f.e. for calls to possibly non-reentrant library
functions).

• check whether timing loops result in proper timing (or preferably consider a rewrite of the code with timer
based delays instead).

• check for differences in printf parameters (some compilers push (va_arg) char variables as int others push
them as char. See section 1.5). Provide a putchar() function if needed.

• check the resulting memory map. Usage of different memory spaces: code, stack, data (for mcs51/ds390
additionally idata, pdata, xdata). Eventually check if unexpected library functions are included.

6.2 Tools included in the distribution

104

http://svn.code.sf.net/p/sdcc/code/trunk/sdcc/device/include/mcs51/compiler.h
http://svn.code.sf.net/p/sdcc/code/trunk/sdcc/device/include/mcs51/compiler.h
http://svn.code.sf.net/p/sdcc/code/trunk/sdcc/device/include/mcs51/cc2510fx.h
http://svn.code.sf.net/p/sdcc/code/trunk/sdcc/device/include/mcs51/cc2510fx.h

6.3. DOCUMENTATION INCLUDED IN THE DISTRIBUTION CHAPTER 6. TIPS

Name Purpose Directory
as2gbmap.py sdas map to rrgb map and no$gmb sym file format converter sdcc/support/scripts
cinc2h.pl gpasm inc to c header file converter sdcc/support/scripts
gen_known_bugs.pl generate knownbugs.html sdcc/support/scripts
keil2sdcc.pl Keil header to SDCC header file converter sdcc/support/scripts
makebin Intel Hex to binary and GameBoy binay format converter sdcc/bin
mcs51-disasm.pl disassembler to the mcs51 instructions contained hex files sdcc/support/scripts
mh2h.c header file conversion sdcc/support/scripts
optimize_pic16devices.pl optimizes or unoptimizes the pic16devices.txt file sdcc/support/scripts
packihx Intel Hex packer sdcc/bin
pic14-header-parser.pl helper to realization of peripheral-handling (PIC14) sdcc/support/scripts
pic16-header-parser.pl helper to realization of peripheral-handling (PIC16) sdcc/support/scripts
pic16fam-h-gen.pl helper to realization of peripheral-handling (PIC14) sdcc/support/scripts
pic18fam-h-gen.pl helper to realization of peripheral-handling (PIC16) sdcc/support/scripts
repack_release.sh repack sdcc to release package sdcc/support/scripts
sdas390 assembler sdcc/bin
sdas6808 assembler sdcc/bin
sdas6500 assembler sdcc/bin
sdas8051 assembler sdcc/bin
sdasgb assembler sdcc/bin
sdasz80 assembler sdcc/bin
sdcc_cygwin_mingw32 cross compile the sdcc with mingw32 under Cygwin sdcc/support/scripts
sdcc_mingw32 cross compile the sdcc with mingw32 sdcc/support/scripts
SDCDB simulator sdcc/bin
sdld linker sdcc/bin
sdld6808 linker sdcc/bin
sdldgb linker sdcc/bin
sdldz80 linker sdcc/bin
uCsim simulator for various architectures sdcc/sim/ucsim

6.3 Documentation included in the distribution

105

6.4. COMMUNICATION ONLINE AT SOURCEFORGE CHAPTER 6. TIPS

Subject / Title Filename / Where to get
SDCC Compiler User Guide You’re reading it right now online at:

http://sdcc.sourceforge.net/doc/sdccman.pdf
Changelog of SDCC sdcc/Changelog online at:

http://svn.code.sf.net/p/sdcc/code/trunk/
sdcc/ChangeLog

ASXXXX Assemblers and
ASLINK Relocating Linker

sdcc/sdas/doc/asmlnk.txt online at:
http://svn.code.sf.net/p/sdcc/code/trunk/
sdcc/sdas/doc/asmlnk.txt

SDCC regression test test_suite_spec online at:
http://sdcc.sourceforge.net/wiki/index.php/
Proposed_Test_Suite_Design

Various notes sdcc/doc/* online at:
http://svn.code.sf.net/p/sdcc/code/trunk/
sdcc/doc/

Notes on debugging with SDCDB sdcc/debugger/README online at:
http://svn.code.sf.net/p/sdcc/code/trunk/
sdcc/debugger/README

uCsim Software simulator for microcon-
trollers

sdcc/sim/ucsim/doc/index.html online at:
http://svn.code.sf.net/p/sdcc/code/trunk/
sdcc/sim/ucsim/doc/index.html

Temporary notes on the pic16 port sdcc/src/pic16/NOTES online at:
http://svn.code.sf.net/p/sdcc/code/trunk/
sdcc/src/pic16/NOTES

SDCC internal documentation (debugging file
format)

sdcc/doc/cdbfileformat.pdf online at:
http://sdcc.sourceforge.net/wiki/index.php/
CDB_File_Format

6.4 Communication online at SourceForge
Subject / Title Note Link
wiki http:

//sdcc.sourceforge.net/wiki/
sdcc-user mailing list around 650 subscribers mid 2009 https://lists.sourceforge.net/

mailman/listinfo/sdcc-user
sdcc-devel mailing list https://lists.sourceforge.net/

mailman/listinfo/sdcc-devel
help forum similar scope as sdcc-user mailing

list
http://sourceforge.net/p/sdcc/
discussion/1865

open discussion forum http://sourceforge.net/p/sdcc/
discussion/1864

trackers (bug tracker, feature
requests, patches, support
requests, webdocs)

http://sourceforge.net/p/sdcc/
_list/tickets

rss feed stay tuned with most (not all) sdcc
activities

http://sourceforge.net/export/
rss2_keepsake.php?group_id=599

With a sourceforge account you can ”monitor” forums and trackers, so that you automatically receive mail on
changes. You can digg out earlier communication by using the search function http://sourceforge.net/
search/?group_id=599.

6.5 Related open source tools

106

http://sdcc.sourceforge.net/doc/sdccman.pdf
http://svn.code.sf.net/p/sdcc/code/trunk/sdcc/ChangeLog
http://svn.code.sf.net/p/sdcc/code/trunk/sdcc/ChangeLog
http://svn.code.sf.net/p/sdcc/code/trunk/sdcc/sdas/doc/asmlnk.txt
http://svn.code.sf.net/p/sdcc/code/trunk/sdcc/sdas/doc/asmlnk.txt
http://sdcc.sourceforge.net/wiki/index.php/Proposed_Test_Suite_Design
http://sdcc.sourceforge.net/wiki/index.php/Proposed_Test_Suite_Design
http://svn.code.sf.net/p/sdcc/code/trunk/sdcc/doc/
http://svn.code.sf.net/p/sdcc/code/trunk/sdcc/doc/
http://svn.code.sf.net/p/sdcc/code/trunk/sdcc/debugger/README
http://svn.code.sf.net/p/sdcc/code/trunk/sdcc/debugger/README
http://svn.code.sf.net/p/sdcc/code/trunk/sdcc/sim/ucsim/doc/index.html
http://svn.code.sf.net/p/sdcc/code/trunk/sdcc/sim/ucsim/doc/index.html
http://svn.code.sf.net/p/sdcc/code/trunk/sdcc/src/pic16/NOTES
http://svn.code.sf.net/p/sdcc/code/trunk/sdcc/src/pic16/NOTES
http://sdcc.sourceforge.net/wiki/index.php/CDB_File_Format
http://sdcc.sourceforge.net/wiki/index.php/CDB_File_Format
http://sdcc.sourceforge.net/wiki/
http://sdcc.sourceforge.net/wiki/
https://lists.sourceforge.net/mailman/listinfo/sdcc-user
https://lists.sourceforge.net/mailman/listinfo/sdcc-user
https://lists.sourceforge.net/mailman/listinfo/sdcc-devel
https://lists.sourceforge.net/mailman/listinfo/sdcc-devel
http://sourceforge.net/p/sdcc/discussion/1865
http://sourceforge.net/p/sdcc/discussion/1865
http://sourceforge.net/p/sdcc/discussion/1864
http://sourceforge.net/p/sdcc/discussion/1864
http://sourceforge.net/p/sdcc/_list/tickets
http://sourceforge.net/p/sdcc/_list/tickets
http://sourceforge.net/export/rss2_keepsake.php?group_id=599
http://sourceforge.net/export/rss2_keepsake.php?group_id=599
http://sourceforge.net/search/?group_id=599
http://sourceforge.net/search/?group_id=599

6.6. RELATED DOCUMENTATION / RECOMMENDED READING CHAPTER 6. TIPS

Name Purpose Where to get
gpsim PIC simulator http:

//www.dattalo.com/gnupic/gpsim.html
gputils GNU PIC utilities http:

//sourceforge.net/projects/gputils
flP5 PIC programmer http://freshmeat.net/projects/flp5/
ec2drv/newcdb Tools for Silicon Laboratories

JTAG debug adapter, partly based
on SDCDB (Unix only)

http://sourceforge.net/projects/ec2drv

indent Formats C source - Master of the
white spaces

http:
//directory.fsf.org/GNU/indent.html

srecord Object file conversion, checksum-
ming, ...

http:
//sourceforge.net/projects/srecord

objdump Object file conversion, ... Part of binutils (should be there anyway)
cmon51 8051 monitor (hex up-/download,

single step, disassemble)
http://sourceforge.net/projects/cmon51

doxygen Source code documentation sys-
tem

http://www.doxygen.org

kdevelop IDE (has anyone tried integrating
SDCC & SDCDB? Unix only)

http://www.kdevelop.org

paulmon 8051 monitor (hex up-/download,
single step, disassemble)

http:
//www.pjrc.com/tech/8051/paulmon2.html

splint Statically checks c sources (see
3.3.4)

http://www.splint.org

ddd Debugger, serves nicely as GUI to
SDCDB (Unix only)

http://www.gnu.org/software/ddd/

d52 Disassembler, can count instruc-
tion cycles, use with options -pnd

http://www.8052.com/users/disasm/

cmake Cross platform build system,
generates Makefiles and project
workspaces

http://www.cmake.org and a dedicated wiki
entry:
http://www.cmake.org/Wiki/CmakeSdcc

6.6 Related documentation / recommended reading

Name Subject / Title Where to get
c-refcard.pdf C Reference Card, 2 pages http:

//refcards.com/refcards/c/index.html
c-faq C-FAQ http://www.c-faq.com
ISO/IEC 9899:TC2 ”C-Standard” http://www.open-std.org/jtc1/sc22/wg14/www/

standards.html#9899

ISO/IEC DTR 18037 ”Extensions for Embedded C” http://www.open-std.org/jtc1/sc22/wg14/www/

docs/n1021.pdf

Latest datasheet of target CPU vendor
Revision history of datasheet vendor

6.7 Application notes specifically for SDCC
SDCC makes no claims about the completeness of this list and about up-to-dateness or correctness of the application
notes.

107

http://www.dattalo.com/gnupic/gpsim.html
http://www.dattalo.com/gnupic/gpsim.html
http://sourceforge.net/projects/gputils
http://sourceforge.net/projects/gputils
http://freshmeat.net/projects/flp5/
http://sourceforge.net/projects/ec2drv
http://directory.fsf.org/GNU/indent.html
http://directory.fsf.org/GNU/indent.html
http://sourceforge.net/projects/srecord
http://sourceforge.net/projects/srecord
http://sourceforge.net/projects/cmon51
http://www.doxygen.org
http://www.kdevelop.org
http://www.pjrc.com/tech/8051/paulmon2.html
http://www.pjrc.com/tech/8051/paulmon2.html
http://www.splint.org
http://www.gnu.org/software/ddd/
http://www.8052.com/users/disasm/
http://www.cmake.org
http://www.cmake.org/Wiki/CmakeSdcc
http://refcards.com/refcards/c/index.html
http://refcards.com/refcards/c/index.html
http://www.c-faq.com
http://www.open-std.org/jtc1/sc22/wg14/www/standards.html#9899
http://www.open-std.org/jtc1/sc22/wg14/www/standards.html#9899
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1021.pdf
http://www.open-std.org/jtc1/sc22/wg14/www/docs/n1021.pdf

6.8. SOME QUESTIONS CHAPTER 6. TIPS

Vendor Subject / Title Where to get

Maxim / Dallas Using the SDCC Compiler for the
DS80C400

http://pdfserv.maxim-ic.com/en/an/AN3346.pdf

Maxim / Dallas Using the Free SDCC C Compiler to
Develop Firmware for the
DS89C420/430/440/450 Family of
Microcontrollers

http://pdfserv.maxim-ic.com/en/an/AN3477.pdf

Silicon Laboratories /
Cygnal

Integrating SDCC 8051 Tools Into The
Silicon Labs IDE

http://www.silabs.com/public/documents/tpub_doc/

anote/Microcontrollers/en/an198.pdf

Ramtron / Goal Semi-
conductor

Interfacing SDCC to Syn and Textpad http://www.ramtron.com/doc/Products/Microcontroller/

Support_Tools.asp

Ramtron / Goal Semi-
conductor

Installing and Configuring SDCC and
Crimson Editor

http://www.ramtron.com/doc/Products/Microcontroller/

Support_Tools.asp

Texas Instruments MSC12xx Programming with SDCC http://focus.ti.com/general/docs/lit/getliterature.

tsp?literatureNumber=sbaa109&fileType=pdf

6.8 Some Questions
Some questions answered, some pointers given - it might be time to in turn ask you some questions:

• can you solve your project with the selected microcontroller? Would you find out early or rather late that
your target is too small/slow/whatever? Can you switch to a slightly better device if it doesn’t fit?

• should you solve the problem with an 8 bit CPU? Or would a 16/32 bit CPU and/or another programming
language be more adequate? Would an operating system on the target device help?

• if you solved the problem, will the marketing department be happy?

• if the marketing department is happy, will customers be happy?

• if you’re the project manager, marketing department and maybe even the customer in one person, have you
tried to see the project from the outside?

• is the project done if you think it is done? Or is just that other interface/protocol/feature/configuration/option
missing? How about website, manual(s), internationali(z|s)ation, packaging, labels, 2nd source for compo-
nents, electromagnetic compatability/interference, documentation for production, production test software,
update mechanism, patent issues?

• is your project adequately positioned in that magic triangle: fame, fortune, fun?

Maybe not all answers to these questions are known and some answers may even be no, nevertheless knowing these
questions may help you to avoid burnout1. Chances are you didn’t want to hear some of them...

1burnout is bad for electronic devices, programmers and motorcycle tyres

108

http://pdfserv.maxim-ic.com/en/an/AN3346.pdf
http://pdfserv.maxim-ic.com/en/an/AN3477.pdf
http://www.silabs.com/public/documents/tpub_doc/anote/Microcontrollers/en/an198.pdf
http://www.silabs.com/public/documents/tpub_doc/anote/Microcontrollers/en/an198.pdf
http://www.ramtron.com/doc/Products/Microcontroller/Support_Tools.asp
http://www.ramtron.com/doc/Products/Microcontroller/Support_Tools.asp
http://www.ramtron.com/doc/Products/Microcontroller/Support_Tools.asp
http://www.ramtron.com/doc/Products/Microcontroller/Support_Tools.asp
http://focus.ti.com/general/docs/lit/getliterature.tsp?literatureNumber=sbaa109&fileType=pdf
http://focus.ti.com/general/docs/lit/getliterature.tsp?literatureNumber=sbaa109&fileType=pdf

Chapter 7

Support

SDCC has grown to be a large project. The compiler alone (without the preprocessor, assembler and linker) is well
over 150,000 lines of code (blank stripped). The open source nature of this project is a key to its continued growth
and support. You gain the benefit and support of many active software developers and end users. Is SDCC perfect?
No, that’s why we need your help. The developers take pride in fixing reported bugs. You can help by reporting
the bugs and helping other SDCC users. There are lots of ways to contribute, and we encourage you to take part in
making SDCC a great software package.

The SDCC project is hosted on the SDCC SourceForge site at http://sourceforge.net/projects/
sdcc. You’ll find the complete set of mailing lists, forums, bug reporting system, patch submission system, wiki,
rss-feed, download area and Subversion code repository there.

7.1 Reporting Bugs
The recommended way of reporting bugs is using the infrastructure of the SourceForge site. You can follow the
status of bug reports there and have an overview about the known bugs.

Bug reports are automatically forwarded to the developer mailing list and will be fixed ASAP. When reporting
a bug, it is very useful to include a small test program (the smaller the better) which reproduces the problem. If
you can isolate the problem by looking at the generated assembly code, this can be very helpful. Compiling your
program with the --dumpall option can sometimes be useful in locating optimization problems. When reporting a
bug please make sure you:

1. Attach the code you are compiling with SDCC.

2. Specify the exact command you use to run SDCC, or attach your Makefile.

3. Specify the SDCC version (type "sdcc -v"), your platform, and operating system.

4. Provide an exact copy of any error message or incorrect output.

5. Put something meaningful in the subject of your message.

Please attempt to include these 5 important parts, as applicable, in all requests for support or when reporting any
problems or bugs with SDCC. Though this will make your message lengthy, it will greatly improve your chance
that SDCC users and developers will be able to help you. Some SDCC developers are frustrated by bug reports
without code provided that they can use to reproduce and ultimately fix the problem, so please be sure to provide
sample code if you are reporting a bug!

Please have a short check that you are using a recent version of SDCC and the bug is not yet known. This is the
link for reporting bugs: http://sourceforge.net/p/sdcc/bugs/. With SDCC on average having more
than 200 downloads on SourceForge per day1 there must be some users. So it’s not exactly easy to find a new bug.
If you find one we need it: reporting bugs is good.

1220 daily downloads on average Jan-Sept 2006 and about 150 daily downloads between 2002 and 2005. This does not include other
methods of distribution.

109

http://sourceforge.net/projects/sdcc
http://sourceforge.net/projects/sdcc
http://sourceforge.net/p/sdcc/bugs/

7.2. REQUESTING FEATURES CHAPTER 7. SUPPORT

7.2 Requesting Features
Like bug reports feature requests are forwarded to the developer mailing list. This is the link for requesting features:
http://sourceforge.net/p/sdcc/feature-requests/.

7.3 Submitting patches
Like bug reports contributed patches are forwarded to the developer mailing list. This is the link for submitting
patches: http://sourceforge.net/p/sdcc/patches/.

You need to specify some parameters to the diff command for the patches to be useful. If you
modified more than one file a patch created f.e. with ”diff -Naur unmodified_directory modi-
fied_directory >my_changes.patch” will be fine, otherwise ”diff -u sourcefile.c.orig sourcefile.c
>my_changes.patch” will do.

7.4 Getting Help
These links should take you directly to the Mailing lists http://sourceforge.net/p/sdcc/mailman/
sdcc-user/2 and the Forums http://sourceforge.net/p/sdcc/discussion/, lists and forums are
archived and searchable so if you are lucky someone already had a similar problem. While mails to the lists
themselves are delivered promptly their web front end on SourceForge sometimes shows a severe time lag (up to
several weeks), if you’re seriously using SDCC please consider subscribing to the lists.

7.5 ChangeLog
You can follow the status of the Subversion version of SDCC by watching the Changelog in the Subversion reposi-
tory http://svn.code.sf.net/p/sdcc/code/trunk/sdcc/ChangeLog.

7.6 Subversion Source Code Repository
The output of sdcc --version or the filenames of the snapshot versions of SDCC include date and its Subversion
number. Subversion allows to download the source of recent or previous versions http://sourceforge.
net/p/sdcc/code/8805/tree/ (by number or by date).

7.7 Release policy
Starting with version 2.4.0 SDCC in 2004 uses a time-based release schedule with one official release usually
during the first half of the year.

The last digit of an official release is zero. Additionally there are daily snapshots available at http://sdcc.
sourceforge.net/snap.php, and you can always build the very last version from the source code available
at Sourceforge http://sdcc.sourceforge.net/snap.php#Source. The SDCC Wiki at http://
sdcc.sourceforge.net/wiki/ also holds some information about past and future releases.

7.8 Quality control
The compiler is passed through daily snapshot build compile and build checks. The so called regression tests check
that SDCC itself compiles flawlessly on several host platforms (i386, Opteron, 64 bit Alpha, ppc64, Mac OS X
on ppc and i386, Solaris on Sparc) and checks the quality of the code generated by SDCC by running the code
for several target platforms through simulators. The regression test suite comprises about 1000 files which expand
to more than 1500 test cases which include about 7000 tests. A large number of tests from the GCC test suite is
included in this. The results of these tests are published daily on SDCC’s snapshot page (click on the red or green
symbols on the right side of http://sdcc.sourceforge.net/snap.php).

2Traffic on sdcc-devel and sdcc-user is about 100 mails/month each not counting automated messages (mid 2003)

110

http://sourceforge.net/p/sdcc/feature-requests/
http://sourceforge.net/p/sdcc/patches/
http://sourceforge.net/p/sdcc/mailman/sdcc-user/
http://sourceforge.net/p/sdcc/mailman/sdcc-user/
http://sourceforge.net/p/sdcc/discussion/
http://svn.code.sf.net/p/sdcc/code/trunk/sdcc/ChangeLog
http://sourceforge.net/p/sdcc/code/8805/tree/
http://sourceforge.net/p/sdcc/code/8805/tree/
http://sdcc.sourceforge.net/snap.php
http://sdcc.sourceforge.net/snap.php
http://sdcc.sourceforge.net/snap.php#Source
http://sdcc.sourceforge.net/wiki/
http://sdcc.sourceforge.net/wiki/
http://sdcc.sourceforge.net/snap.php

7.9. EXAMPLES CHAPTER 7. SUPPORT

You’ll find the test code in the directory sdcc/support/regression. You can run these tests manually by running
make in this directory (or f.e. ”make test-mcs51” if you don’t want to run the complete tests). The test code
might also be interesting if you want to look for examples checking corner cases of SDCC or if you plan to submit
patches.

The PIC14 port uses a different set of regression tests , you’ll find them in the directory sdcc/src/regression.

7.9 Examples
You’ll find some small examples in the directory sdcc/device/examples/. More examples and libraries are avail-
able at The SDCC Open Knowledge Resource http://sdccokr.dl9sec.de/ web site or at http://www.
pjrc.com/tech/8051/.

7.10 Use of SDCC in Education
In short: highly encouraged3. If your rationales are to:

1. give students a chance to understand the complete steps of code generation

2. have a curriculum that can be extended for years. Then you could use an FPGA board as target and your cur-
riculum will seamlessly extend from logic synthesis (http://www.opencores.org opencores.org, Oregano
http://www.oregano.at/ip/ip01.htm), over assembly programming, to C to FPGA compilers
(FPGAC http://sourceforge.net/projects/fpgac/) and to C.

3. be able to insert excursions about skills like using a revision control system, submitting/applying
patches, using a type-setting (as opposed to word-processing) engine LYX/LATEX, using SourceForge
http://sourceforge.net/, following some netiquette http://en.wikipedia.org/wiki/
Netiquette, understanding BSD/LGPL/GPL/Proprietary licensing, growth models of Open Source
Software, CPU simulation, compiler regression tests.
And if there should be a shortage of ideas then you can always point students to the ever-growing feature
request list http://sourceforge.net/p/sdcc/feature-requests/.

4. not tie students to a specific host platform and instead allow them to use a host platform of their choice
(among them Alpha, i386, i386_64, Mac OS X, Mips, Sparc, Windows and eventually OLPC http://
www.laptop.org)

5. not encourage students to use illegal copies of educational software

6. be immune to licensing/availability/price changes of the chosen tool chain

7. be able to change to a new target platform without having to adopt a new tool chain

8. have complete control over and insight into the tool chain

9. make your students aware about the pros and cons of open source software development

10. give back to the public as you are probably at least partially publicly funded

11. give students a chance to publicly prove their skills and to possibly see a world wide impact

then SDCC is probably among the first choices. Well, probably SDCC might be the only choice.

3the phrase "use in education" might evoke the association "only fit for use in education". This connotation is not intended but nevertheless
risked as the licensing of SDCC makes it difficult to offer educational discounts

111

http://sdccokr.dl9sec.de/
http://www.pjrc.com/tech/8051/
http://www.pjrc.com/tech/8051/
opencores.org
http://www.oregano.at/ip/ip01.htm
http://sourceforge.net/projects/fpgac/
http://sourceforge.net/
http://en.wikipedia.org/wiki/Netiquette
http://en.wikipedia.org/wiki/Netiquette
http://sourceforge.net/p/sdcc/feature-requests/
http://www.laptop.org
http://www.laptop.org

Chapter 8

SDCC Technical Data

8.1 Optimizations
SDCC performs a host of standard optimizations in addition to some MCU specific optimizations.

8.1.1 Sub-expression Elimination
The compiler does local and global common subexpression elimination, e.g.:

i = x + y + 1;
j = x + y;

will be translated to

iTemp = x + y;
i = iTemp + 1;
j = iTemp;

Some subexpressions are not as obvious as the above example, e.g.:

a->b[i].c = 10;
a->b[i].d = 11;

In this case the address arithmetic a->b[i] will be computed only once; the equivalent code in C would be.

iTemp = a->b[i];
iTemp.c = 10;
iTemp.d = 11;

The compiler will try to keep these temporary variables in registers.

8.1.2 Dead-Code Elimination
int global;

void f () {
int i;
i = 1; /* dead store */
global = 1; /* dead store */
global = 2;
return;
global = 3; /* unreachable */

}

will be changed to

112

8.1. OPTIMIZATIONS CHAPTER 8. SDCC TECHNICAL DATA

int global;

void f () {
global = 2;

}

8.1.3 Copy-Propagation
int f() {

int i, j;
i = 10;
j = i;
return j;

}

will be changed to

int f() {
int i, j;
i = 10;
j = 10;
return 10;

}

Note: the dead stores created by this copy propagation will be eliminated by dead-code elimination.

8.1.4 Loop Optimizations
Two types of loop optimizations are done by SDCC loop invariant lifting and strength reduction of loop induction
variables. In addition to the strength reduction the optimizer marks the induction variables and the register allocator
tries to keep the induction variables in registers for the duration of the loop. Because of this preference of the
register allocator, loop induction optimization causes an increase in register pressure, which may cause unwanted
spilling of other temporary variables into the stack / data space. The compiler will generate a warning message
when it is forced to allocate extra space either on the stack or data space. If this extra space allocation is undesirable
then induction optimization can be eliminated either for the entire source file (with --noinduction option) or for a
given function only using #pragma noinduction.

Loop Invariant:

for (i = 0 ; i < 100 ; i ++)
f += k + l;

changed to

itemp = k + l;
for (i = 0; i < 100; i++)

f += itemp;

As mentioned previously some loop invariants are not as apparent, all static address computations are also moved
out of the loop.

Strength Reduction, this optimization substitutes an expression by a cheaper expression:

for (i=0;i < 100; i++)
ar[i*5] = i*3;

changed to

itemp1 = 0;
itemp2 = 0;

113

8.1. OPTIMIZATIONS CHAPTER 8. SDCC TECHNICAL DATA

for (i=0;i< 100;i++) {
ar[itemp1] = itemp2;
itemp1 += 5;
itemp2 += 3;

}

The more expensive multiplication is changed to a less expensive addition.

8.1.5 Loop Reversing
This optimization is done to reduce the overhead of checking loop boundaries for every iteration. Some simple
loops can be reversed and implemented using a “decrement and jump if not zero” instruction. SDCC checks for
the following criterion to determine if a loop is reversible (note: more sophisticated compilers use data-dependency
analysis to make this determination, SDCC uses a more simple minded analysis).

• The ’for’ loop is of the form

for(<symbol> = <expression>; <sym> [< | <=] <expression>; [<sym>++ |
<sym> += 1])
<for body>

• The <for body> does not contain “continue” or ’break”.

• All goto’s are contained within the loop.

• No function calls within the loop.

• The loop control variable <sym> is not assigned any value within the loop

• The loop control variable does NOT participate in any arithmetic operation within the loop.

• There are NO switch statements in the loop.

8.1.6 Algebraic Simplifications
SDCC does numerous algebraic simplifications, the following is a small sub-set of these optimizations.

i = j + 0; /* changed to: */ i = j;
i /= 2; /* for unsigned i changed to: */ i >>= 1;
i = j - j; /* changed to: */ i = 0;
i = j / 1; /* changed to: */ i = j;

Note the subexpressions given above are generally introduced by macro expansions or as a result of copy/constant
propagation.

8.1.7 ’switch’ Statements
SDCC can optimize switch statements to jump tables. It makes the decision based on an estimate of the generated
code size. SDCC is quite liberal in the requirements for jump table generation:

• The labels need not be in order, and the starting number need not be one or zero, the case labels are in
numerical sequence or not too many case labels are missing.

switch(i) { switch (i) {
case 4: ... case 0: ...
case 5: ... case 1: ...
case 3: ...
case 6: ... case 3: ...
case 7: ... case 4: ...
case 8: ... case 5: ...
case 9: ... case 6: ...

114

8.1. OPTIMIZATIONS CHAPTER 8. SDCC TECHNICAL DATA

case 10: ... case 7: ...
case 11: ... case 8: ...

} }

Both the above switch statements will be implemented using a jump-table. The example to the right side is
slightly more efficient as the check for the lower boundary of the jump-table is not needed.

• The number of case labels is not larger than supported by the target architecture.

• If the case labels are not in numerical sequence (’gaps’ between cases) SDCC checks whether a jump table
with additionally inserted dummy cases is still attractive.

• If the starting number is not zero and a check for the lower boundary of the jump-table can thus be eliminated
SDCC might insert dummy cases 0,

Switch statements which have large gaps in the numeric sequence or those that have too many case labels can be
split into more than one switch statement for efficient code generation, e.g.:

switch (i) {
case 1: ...
case 2: ...
case 3: ...
case 4: ...
case 5: ...
case 6: ...
case 7: ...
case 101: ...
case 102: ...
case 103: ...
case 104: ...
case 105: ...
case 106: ...
case 107: ...

}

If the above switch statement is broken down into two switch statements

switch (i) {
case 1: ...
case 2: ...
case 3: ...
case 4: ...
case 5: ...
case 6: ...
case 7: ...

}

and

switch (i) {
case 101: ...
case 102: ...
case 103: ...
case 104: ...
case 105: ...
case 106: ...
case 107: ...

}

then both the switch statements will be implemented using jump-tables whereas the unmodified switch statement
will not be.

115

8.1. OPTIMIZATIONS CHAPTER 8. SDCC TECHNICAL DATA

8.1.8 Bit-shifting Operations.
Bit shifting is one of the most frequently used operation in embedded programming. SDCC tries to implement
bit-shift operations in the most efficient way possible, e.g.:

unsigned char i;
...
i >>= 4;
...

generates the following code:

mov a,_i
swap a
anl a,#0x0f
mov _i,a

Typically, SDCC will not setup a loop if the shift count is known. Another example:

unsigned int i;
...
i >>= 9;
...

will generate:

mov a,(_i + 1)
mov (_i + 1),#0x00
clr c
rrc a
mov _i,a

8.1.9 Bit-rotation
A special case of the bit-shift operation is bit rotation, SDCC recognizes the following expression to be a left
bit-rotation:

unsigned char i; /* unsigned is needed for rotation */
...
i = ((i << 1) | (i >> 7));
...

will generate the following code:

mov a,_i
rl a
mov _i,a

SDCC uses pattern matching on the parse tree to determine this operation.Variations of this case will also be
recognized as bit-rotation, i.e.:

i = ((i >> 7) | (i << 1)); /* left-bit rotation */

8.1.10 Nibble and Byte Swapping
Other special cases of the bit-shift operations are nibble or byte swapping, SDCC recognizes the following expres-
sions:

unsigned char i;
unsigned int j;
...
i = ((i << 4) | (i >> 4));
j = ((j << 8) | (j >> 8));

116

8.1. OPTIMIZATIONS CHAPTER 8. SDCC TECHNICAL DATA

and generates a swap instruction for the nibble swapping or move instructions for the byte swapping. The ”j”
example can be used to convert from little to big-endian or vice versa. If you want to change the endianness of a
signed integer you have to cast to (unsigned int) first.

Note that SDCC stores numbers in little-endian1 format (i.e. lowest order first) for most backends. However,
the hc08, s08 and stm8 backends are big-endian.

8.1.11 Getting a Bit
It is frequently required to obtain the highest order bit of an integral type (long, int, short or char types). Also
obtaining any other order bit is not uncommon. SDCC recognizes the following expressions to yield the highest
order bit and generates optimized code for it, e.g.:

unsigned int gint;

foo () {
unsigned char hob1, aob1;
bit hob2, hob3, aob2, aob3;
...
hob1 = (gint >> 15) & 1;
hob2 = (gint >> 15) & 1;
hob3 = gint & 0x8000;
aob1 = (gint >> 9) & 1;
aob2 = (gint >> 8) & 1;
aob3 = gint & 0x0800;
...

}

will generate the following code:

61 ; hob.c 7
000A E5*01 62 mov a,(_gint + 1)
000C 23 63 rl a
000D 54 01 64 anl a,#0x01
000F F5*02 65 mov _foo_hob1_1_1,a

66 ; hob.c 8
0011 E5*01 67 mov a,(_gint + 1)
0013 33 68 rlc a
0014 92*00 69 mov _foo_hob2_1_1,c

66 ; hob.c 9
0016 E5*01 67 mov a,(_gint + 1)
0018 33 68 rlc a
0019 92*01 69 mov _foo_hob3_1_1,c

70 ; hob.c 10
001B E5*01 71 mov a,(_gint + 1)
001D 03 72 rr a
001E 54 01 73 anl a,#0x01
0020 F5*03 74 mov _foo_aob1_1_1,a

75 ; hob.c 11
0022 E5*01 76 mov a,(_gint + 1)
0024 13 77 rrc a
0025 92*02 78 mov _foo_aob2_1_1,c

79 ; hob.c 12
0027 E5*01 80 mov a,(_gint + 1)
0029 A2 E3 81 mov c,acc[3]
002B 92*03 82 mov _foo_aob3_1_1,c

1Usually 8-bit processors don’t care much about endianness. This is not the case for the standard 8051 which only has an instruction to
increment its dptr-datapointer so little-endian is the more efficient byte order.

117

8.1. OPTIMIZATIONS CHAPTER 8. SDCC TECHNICAL DATA

Other variations of these cases however will not be recognized. They are standard C expressions, so I heartily
recommend these be the only way to get the highest order bit, (it is portable). Of course it will be recognized even
if it is embedded in other expressions, e.g.:

xyz = gint + ((gint >> 15) & 1);

will still be recognized.

8.1.12 Higher Order Byte / Higher Order Word
It is also frequently required to obtain a higher order byte or word of a larger integral type (long, int or short types).
For mcs51, SDCC recognizes the following expressions to yield the higher order byte or word and generates
optimized code for it, e.g.:

unsigned int gint;
unsigned long int glong;

foo () {
unsigned char hob1, hob2;
unsigned int how1, how2;
...
hob1 = (gint >> 8) & 0xFF;
hob2 = glong >> 24;
how1 = (glong >> 16) & 0xFFFF;
how2 = glong >> 8;
...

}

will generate the following code:

91 ; hob.c 15
0037 85*01*06 92 mov _foo_hob1_1_1,(_gint +

1)
93 ; hob.c 16

003A 85*05*07 94 mov _foo_hob2_1_1,(_glong +
3)

95 ; hob.c 17
003D 85*04*08 96 mov _foo_how1_1_1,(_glong +

2)
0040 85*05*09 97 mov (_foo_how1_1_1 + 1),(_glong

+ 3)
0043 85*03*0A 98 mov _foo_how2_1_1,(_glong +

1)
0046 85*04*0B 99 mov (_foo_how2_1_1 + 1),(_glong

+ 2)

Again, variations of these cases may not be recognized. They are standard C expressions, so I heartily recommend
these be the only way to get the higher order byte/word, (it is portable). Of course it will be recognized even if it is
embedded in other expressions, e.g.:

xyz = gint + ((gint >> 8) & 0xFF);

will still be recognized.

8.1.13 Placement of Bank-Selection Instructions
For non-intrinsic named address spaces, SDCC will place the bank selection instructions optimally. For details see
Philipp Klaus Krause, ”Optimal Placement of Bank Selection Instructions in Polynomial Time”, Proceedings of
the 16th International Workshop on Software and Compilers for Embedded Systems, M-SCOPES ’13, pp 23–30.
Association for Computing Machinery, 2013.

118

8.1. OPTIMIZATIONS CHAPTER 8. SDCC TECHNICAL DATA

8.1.14 Lifetime-Optimal Speculative Partial Redundancy Elimination
SDCC has an implementation of lifetime-optimal speculative partial redundancy elimination based on tree-
decompositions.

8.1.15 Register Allocation
SDCC currently has two register allocators. One of them is optimal when optimizing for code size. This register
allocator is used by default on all ports except for mcs51, ds390, pic14 and pic16. With the exception of hc08 and
s08, it is also the only available register allocator for these ports. Even though it runs in polynomial time, it can be
quite slow; therefore the --max-allocs-per-node command line option can be used for a trade-off between
compilation speed and quality of the generated code: Lower values result in faster compilation, higher values can
result in better code being generated.

It first creates a tree-decomposition of the control-flow graph, and then uses dynamic programming bottom-
up along the tree-decomposition. Optimality is achieved through the use of a cost function, which gives cost for
instructions under register assignments. The cost function is target-specific and has to be implemented for each
port; in all current SDCC ports the cost function is integrated into code generation.

For more details on how this register allocator works, see: Philipp Klaus Krause, ”Optimal Register Allocation
in Polynomial Time”, Compiler Construction - 22nd International Conference, CC 2013, Held as Part of the Euro-
pean Joint Conferences on Theory and Practice of Software, ETAPS 2013. Proceedings, Lecture Notes in Computer
Science, volume 7791, pp. 1-20. Springer, 2013. Also: Philipp Klaus Krause, ”Bytewise Register Allocation”, Pro-
ceedings of the 18th International Workshop on Software and Compilers for Embedded Systems, SCOPES ’15, pp
22–27. Association for Computing Machinery, 2015.

8.1.16 Peephole Optimizer
The compiler uses a rule based, pattern matching and re-writing mechanism for peep-hole optimization. It is
inspired by copt a peep-hole optimizer by Christopher W. Fraser (cwfraser @ microsoft.com). A default set of
rules are compiled into the compiler, additional rules may be added with the --peep-file <filename> option. The
rule language is best illustrated with examples.

replace {
mov %1,a
mov a,%1

} by {
mov %1,a

}

The above rule will change the following assembly sequence:

mov r1,a
mov a,r1

to

mov r1,a

Note: All occurrences of a %n (pattern variable) must denote the same string. With the above rule, the assembly
sequence:

mov r1,a
mov a,r2

will remain unmodified.

Other special case optimizations may be added by the user (via --peep-file option). E.g. some variants of
the 8051 MCU allow only ajmp and acall. The following two rules will change all ljmp and lcall to ajmp
and acall

replace { lcall %1 } by { acall %1 }
replace { ljmp %1 } by { ajmp %1 }

119

8.1. OPTIMIZATIONS CHAPTER 8. SDCC TECHNICAL DATA

(NOTE: from version 2.7.3 on, you can use option --acall-ajmp, which also takes care of aligning the interrupt
vectors properly.)

The inline-assembler code is also passed through the peep hole optimizer, thus the peephole optimizer can also
be used as an assembly level macro expander. The rules themselves are MCU dependent whereas the rule language
infra-structure is MCU independent. Peephole optimization rules for other MCU can be easily programmed using
the rule language.

The syntax for a rule is as follows:

rule := replace [restart] ’{’ <assembly sequence> ’\n’
’}’ by ’{’ ’\n’

<assembly sequence> ’\n’
’}’ [if <functionName>] ’\n’

<assembly sequence> := assembly instruction (each instruction including labels must be on a separate line).

The optimizer will apply to the rules one by one from the top in the sequence of their appearance, it will
terminate when all rules are exhausted. If the ’restart’ option is specified, then the optimizer will start matching the
rules again from the top, this option for a rule is expensive (performance), it is intended to be used in situations
where a transformation will trigger the same rule again. An example of this (not a good one, it has side effects) is
the following rule:

replace restart {
pop %1
push %1 } by {
; nop

}

Note that the replace pattern cannot be a blank, but can be a comment line. Without the ’restart’ option only the
innermost ’pop’ ’push’ pair would be eliminated, i.e.:

pop ar1
pop ar2
push ar2
push ar1

would result in:

pop ar1
; nop
push ar1

with the restart option the rule will be applied again to the resulting code and then all the pop-push pairs will be
eliminated to yield:

; nop
; nop

A conditional function can be attached to a rule. Attaching rules are somewhat more involved, let’s illustrate this
with an example.

replace {
ljmp %5

%2:
} by {

sjmp %5
%2:
} if labelInRange

120

8.2. CYCLOMATIC COMPLEXITY CHAPTER 8. SDCC TECHNICAL DATA

The optimizer does a look-up of a function name table defined in function callFuncByName in the source file SD-
CCpeeph.c, with the name labelInRange. If it finds a corresponding entry the function is called. Note there can be
no parameters specified for some of these functions, in this case the use of %5 is crucial, since the function labelIn-
Range expects to find the label in that particular variable (the hash table containing the variable bindings is passed
as a parameter). If you want to code more such functions, take a close look at the function labelInRange and the
calling mechanism in source file SDCCpeeph.c. Currently implemented are labelInRange, labelRefCount, label-
RefCountChange, labelIsReturnOnly, xramMovcOption, portIsDS390, 24bitMode, notVolatile. notUsed, notSame,
operandsNotRelated, labelJTInRange, canAssign, optimizeReturn, notUsedFrom, labelIsReturnOnly, operandsLit-
eral, labelIsUncondJump, deadMove, useAcallAjmp and okToRemoveSLOC.

This whole thing is a little kludgy, but maybe some day SDCC will have some better means. If you are looking
at the peeph*.def files, you will see the default rules that are compiled into the compiler, you can add your own
rules in the default set there if you get tired of specifying the --peep-file option.

8.2 Cyclomatic Complexity
Cyclomatic complexity of a function is defined as the number of independent paths the program can take during
execution of the function. This is an important number since it defines the number test cases you have to generate
to validate the function. The accepted industry standard for complexity number is 10, if the cyclomatic complexity
reported by SDCC exceeds 10 you should think about simplification of the function logic. Note that the complexity
level is not related to the number of lines of code in a function. Large functions can have low complexity, and
small functions can have large complexity levels.

SDCC uses the following formula to compute the complexity:

complexity = (number of edges in control flow graph) - (number of nodes in control flow graph) + 2;

Having said that the industry standard is 10, you should be aware that in some cases it be may unavoidable
to have a complexity level of less than 10. For example if you have switch statement with more than 10 case labels,
each case label adds one to the complexity level. The complexity level is by no means an absolute measure of
the algorithmic complexity of the function, it does however provide a good starting point for which functions you
might look at for further optimization.

8.3 Retargetting for other Processors
The issues for retargetting the compiler are far too numerous to be covered by this document. What follows is a
brief description of each of the phases of the compiler and its MCU dependency.

• Parsing the source and building the annotated parse tree. This phase is largely MCU independent (except
for the language extensions). Syntax & semantic checks are also done in this phase, along with some initial
optimizations like back patching labels and the pattern matching optimizations like bit-rotation etc.

• The second phase involves generating an intermediate code which can be easy manipulated during the later
phases. This phase is entirely MCU independent. The intermediate code generation assumes the target
machine has unlimited number of registers, and designates them with the name iTemp. The compiler can be
made to dump a human readable form of the code generated by using the --dumpraw option.

• This phase does the bulk of the standard optimizations and is also MCU independent. This phase can be
broken down into several sub-phases:

Break down intermediate code (iCode) into basic blocks.
Do control flow & data flow analysis on the basic blocks.
Do local common subexpression elimination, then global subexpression elimination
Dead code elimination
Loop optimizations
If loop optimizations caused any changes then do ’global subexpression elimination’ and ’dead code
elimination’ again.

121

8.3. RETARGETTING FOR OTHER PROCESSORS CHAPTER 8. SDCC TECHNICAL DATA

• This phase determines the live-ranges; by live range I mean those iTemp variables defined by the compiler
that still survive after all the optimizations. Live range analysis is essential for register allocation, since these
computation determines which of these iTemps will be assigned to registers, and for how long.

• Phase five is register allocation. For new ports register allocator described above in 8.1.15 should be used in
most cases, since it can result in substantially better code. In the old register allocator, there are two parts to
register allocation.

The first part I call ’register packing’ (for lack of a better term). In this case several MCU specific
expression folding is done to reduce register pressure.

The second part is more MCU independent and deals with allocating registers to the remaining live
ranges. A lot of MCU specific code does creep into this phase because of the limited number of index
registers available in the 8051.

• The Code generation phase is (unhappily), entirely MCU dependent and very little (if any at all) of this code
can be reused for other MCU. However the scheme for allocating a homogenized assembler operand for each
iCode operand may be reused.

• As mentioned in the optimization section the peep-hole optimizer is rule based system, which can repro-
grammed for other MCUs.

More information is available on SDCC Wiki (preliminary link https://sourceforge.net/p/sdcc/
wiki/Adding%20a%20port/) and in the thread http://sourceforge.net/mailarchive/
message.php?msg_id=13954144 .

122

https://sourceforge.net/p/sdcc/wiki/Adding%20a%20port/
https://sourceforge.net/p/sdcc/wiki/Adding%20a%20port/
http://sourceforge.net/mailarchive/message.php?msg_id=13954144
http://sourceforge.net/mailarchive/message.php?msg_id=13954144

Chapter 9

Compiler internals

9.1 The anatomy of the compiler
This is an excerpt from an article published in Circuit Cellar Magazine in August 2000. It’s outdated (the compiler
is much more efficient now and user/developer friendly), but pretty well exposes the guts of it all.

The current version of SDCC can generate code for Intel 8051 and Z80 MCU. It is fairly easy to retarget
for other 8-bit MCU. Here we take a look at some of the internals of the compiler.

Parsing Parsing the input source file and creating an AST (Annotated Syntax Tree). This phase also involves
propagating types (annotating each node of the parse tree with type information) and semantic analysis. There are
some MCU specific parsing rules. For example the intrinsic named address spaces are MCU specific: While there
may be an __xdata intrinsic named address space for 8051 there none for z80. SDCC has MCU specific intrinsic
named address spacess, i.e. __xdata will be treated as a named address space when parsing 8051 C code but will
be treated as a C identifier when parsing z80 code.

Generating iCode Intermediate code generation. In this phase the AST is broken down into three-operand form
(iCode). These three operand forms are represented as doubly linked lists. ICode is the term given to the interme-
diate form generated by the compiler. ICode example section shows some examples of iCode generated for some
simple C source functions.

Optimizations. Bulk of the target independent optimizations is performed in this phase. The optimizations in-
clude constant propagation, common sub-expression elimination, loop invariant code movement, strength reduction
of loop induction variables and dead-code elimination.

Live range analysis During intermediate code generation phase, the compiler assumes the target machine has
infinite number of registers and generates a lot of temporary variables. The live range computation determines
the lifetime of each of these compiler-generated temporaries. A picture speaks a thousand words. ICode example
sections show the live range annotations for each of the operand. It is important to note here, each iCode is assigned
a number in the order of its execution in the function. The live ranges are computed in terms of these numbers.
The from number is the number of the iCode which first defines the operand and the to number signifies the iCode
which uses this operand last.

Register Allocation The register allocation determines the type and number of registers needed by each operand.
In most MCUs only a few registers can be used for indirect addressing. In case of 8051 for example the registers
R0 & R1 can be used to indirectly address the internal ram and DPTR to indirectly address the external ram. The
compiler will try to allocate the appropriate register to pointer variables if it can. ICode example section shows the
operands annotated with the registers assigned to them. The compiler will try to keep operands in registers as much
as possible; there are several schemes the compiler uses to do achieve this. When the compiler runs out of registers
the compiler will check to see if there are any live operands which is not used or defined in the current basic block

123

9.1. THE ANATOMY OF THE COMPILER CHAPTER 9. COMPILER INTERNALS

being processed, if there are any found then it will push that operand and use the registers in this block, the operand
will then be popped at the end of the basic block.

There are other MCU specific considerations in this phase. Some MCUs have an accumulator; very short-lived
operands could be assigned to the accumulator instead of a general-purpose register.

Code generation Figure II gives a table of iCode operations supported by the compiler. The code generation
involves translating these operations into corresponding assembly code for the processor. This sounds overly
simple but that is the essence of code generation. Some of the iCode operations are generated on a MCU specific
manner for example, the z80 port does not use registers to pass parameters so the SEND and RECV iCode
operations will not be generated, and it also does not support JUMPTABLES.

Figure II

iCode Operands Description C Equivalent
’!’ IC_LEFT()

IC_RESULT()
NOT operation IC_RESULT = ! IC_LEFT;

’~’ IC_LEFT()
IC_RESULT()

Bitwise complement of IC_RESULT = ~IC_LEFT;

RRC IC_LEFT()
IC_RESULT()

Rotate right with carry IC_RESULT = (IC_LEFT << 1) | (IC_LEFT >>
(sizeof(IC_LEFT)*8-1));

RLC IC_LEFT()
IC_RESULT()

Rotate left with carry IC_RESULT = (IC_LEFT << (sizeof(LC_LEFT)*8-1)) |
(IC_LEFT >> 1);

UNARYMINUS IC_LEFT()
IC_RESULT()

Unary minus IC_RESULT = - IC_LEFT;

IPUSH IC_LEFT() Push the operand into stack NONE

IPOP IC_LEFT() Pop the operand from the stack NONE

CALL IC_LEFT()
IC_RESULT()

Call the function represented
by IC_LEFT

IC_RESULT = IC_LEFT();

PCALL IC_LEFT()
IC_RESULT()

Call via function pointer IC_RESULT = (*IC_LEFT)();

RETURN IC_LEFT() Return the value in operand
IC_LEFT

return IC_LEFT;

LABEL IC_LABEL() Label IC_LABEL:

GOTO IC_LABEL() Goto label goto IC_LABEL();

’+’ IC_LEFT()
IC_RIGHT()
IC_RESULT()

Addition IC_RESULT = IC_LEFT + IC_RIGHT

’-’ IC_LEFT()
IC_RIGHT()
IC_RESULT()

Subtraction IC_RESULT = IC_LEFT - IC_RIGHT

’*’ IC_LEFT()
IC_RIGHT()
IC_RESULT()

Multiplication IC_RESULT = IC_LEFT * IC_RIGHT;

’/’ IC_LEFT()
IC_RIGHT()
IC_RESULT()

Division IC_RESULT = IC_LEFT / IC_RIGHT;

’%’ IC_LEFT()
IC_RIGHT()
IC_RESULT()

Modulus IC_RESULT = IC_LEFT % IC_RIGHT;

’<’ IC_LEFT()
IC_RIGHT()
IC_RESULT()

Less than IC_RESULT = IC_LEFT < IC_RIGHT;

’>’ IC_LEFT()
IC_RIGHT()
IC_RESULT()

Greater than IC_RESULT = IC_LEFT > IC_RIGHT;

124

9.1. THE ANATOMY OF THE COMPILER CHAPTER 9. COMPILER INTERNALS

iCode Operands Description C Equivalent
EQ_OP IC_LEFT()

IC_RIGHT()
IC_RESULT()

Equal to IC_RESULT = IC_LEFT == IC_RIGHT;

AND_OP IC_LEFT()
IC_RIGHT()
IC_RESULT()

Logical and operation IC_RESULT = IC_LEFT && IC_RIGHT;

OR_OP IC_LEFT()
IC_RIGHT()
IC_RESULT()

Logical or operation IC_RESULT = IC_LEFT || IC_RIGHT;

’^’ IC_LEFT()
IC_RIGHT()
IC_RESULT()

Exclusive OR IC_RESULT = IC_LEFT ^ IC_RIGHT;

’|’ IC_LEFT()
IC_RIGHT()
IC_RESULT()

Bitwise OR IC_RESULT = IC_LEFT | IC_RIGHT;

BITWISEAND IC_LEFT()
IC_RIGHT()
IC_RESULT()

Bitwise AND IC_RESULT = IC_LEFT & IC_RIGHT;

LEFT_OP IC_LEFT()
IC_RIGHT()
IC_RESULT()

Left shift IC_RESULT = IC_LEFT << IC_RIGHT

RIGHT_OP IC_LEFT()
IC_RIGHT()
IC_RESULT()

Right shift IC_RESULT = IC_LEFT >> IC_RIGHT

GET_VALUE_
AT_ ADDRESS

IC_LEFT()
IC_RESULT()

Indirect fetch IC_RESULT = (*IC_LEFT);

POINTER_SET IC_RIGHT()
IC_RESULT()

Indirect set (*IC_RESULT) = IC_RIGHT;

’=’ IC_RIGHT()
IC_RESULT()

Assignment IC_RESULT = IC_RIGHT;

IFX IC_COND
IC_TRUE
IC_LABEL

Conditional jump. If true la-
bel is present then jump to true
label if condition is true else
jump to false label if condition
is false

if (IC_COND) goto IC_TRUE;
Or
If (!IC_COND) goto IC_FALSE;

ADDRESS_OF IC_LEFT()
IC_RESULT()

Address of IC_RESULT = &IC_LEFT();

JUMPTABLE IC_JTCOND
IC_JTLABELS

Jump to list of labels depending
on the value of JTCOND

Switch statement

CAST IC_RIGHT()
IC_LEFT()
IC_RESULT()

Cast types IC_RESULT = (typeof IC_LEFT) IC_RIGHT;

SEND IC_LEFT() This is used for passing param-
eters in registers;
move IC_LEFT to the next
available parameter register.

None

RECV IC_RESULT() This is used for receiving pa-
rameters passed in registers;
Move the values in the next pa-
rameter register to IC_RESULT

None

(some more have
been added)

see f.e. gen51Code() in src/mcs51/gen.c

125

9.1. THE ANATOMY OF THE COMPILER CHAPTER 9. COMPILER INTERNALS

ICode Example This section shows some details of iCode. The example C code does not do anything useful; it
is used as an example to illustrate the intermediate code generated by the compiler.

1. __xdata int * p;
2. int gint;
3. /* This function does nothing useful. It is used
4. for the purpose of explaining iCode */
5. short function (__data int *x)
6. {
7. short i=10; /* dead initialization eliminated */
8. short sum=10; /* dead initialization eliminated */
9. short mul;
10. int j ;
11. while (*x) *x++ = *p++;
12. sum = 0 ;
13. mul = 0;
14. /* compiler detects i,j to be induction variables */
15. for (i = 0, j = 10 ; i < 10 ; i++, j--) {
16. sum += i;
17. mul += i * 3; /* this multiplication remains */
18. gint += j * 3; /* this multiplication changed to addition

*/
19. }
20. return sum+mul;
21. }

In addition to the operands each iCode contains information about the filename and line it corresponds to in the
source file. The first field in the listing should be interpreted as follows:
Filename(linenumber: iCode Execution sequence number : ICode hash table key : loop depth of the iCode).

Then follows the human readable form of the ICode operation. Each operand of this triplet form can be of three
basic types a) compiler generated temporary b) user defined variable c) a constant value. Note that local variables
and parameters are replaced by compiler generated temporaries. Live ranges are computed only for temporaries
(i.e. live ranges are not computed for global variables). Registers are allocated for temporaries only. Operands are
formatted in the following manner:
Operand Name [lr live-from : live-to] { type information } [registers allocated].

As mentioned earlier the live ranges are computed in terms of the execution sequence number of the iCodes, for
example
the iTemp0 is live from (i.e. first defined in iCode with execution sequence number 3, and is last used in the iCode
with sequence number 5). For induction variables such as iTemp21 the live range computation extends the lifetime
from the start to the end of the loop.
The register allocator used the live range information to allocate registers, the same registers may be used for
different temporaries if their live ranges do not overlap, for example r0 is allocated to both iTemp6 and to iTemp17
since their live ranges do not overlap. In addition the allocator also takes into consideration the type and usage
of a temporary, for example itemp6 is a pointer to near space and is used as to fetch data from (i.e. used in
GET_VALUE_AT_ADDRESS) so it is allocated a pointer register (r0). Some short lived temporaries are allocated
to special registers which have meaning to the code generator e.g. iTemp13 is allocated to a pseudo register CC
which tells the back end that the temporary is used only for a conditional jump the code generation makes use of
this information to optimize a compare and jump ICode.
There are several loop optimizations performed by the compiler. It can detect induction variables iTemp21(i)
and iTemp23(j). Also note the compiler does selective strength reduction, i.e. the multiplication of an induction
variable in line 18 (gint = j * 3) is changed to addition, a new temporary iTemp17 is allocated and assigned a initial
value, a constant 3 is then added for each iteration of the loop. The compiler does not change the multiplication in
line 17 however since the processor does support an 8 * 8 bit multiplication.
Note the dead code elimination optimization eliminated the dead assignments in line 7 & 8 to I and sum respectively.

Sample.c (5:1:0:0) _entry($9) :
Sample.c(5:2:1:0) proc _function [lr0:0]{function short}
Sample.c(11:3:2:0) iTemp0 [lr3:5]{_near * int}[r2] = recv

126

9.1. THE ANATOMY OF THE COMPILER CHAPTER 9. COMPILER INTERNALS

Sample.c(11:4:53:0) preHeaderLbl0($11) :
Sample.c(11:5:55:0) iTemp6 [lr5:16]{_near * int}[r0] := iTemp0 [lr3:5]{_near * int}[r2]
Sample.c(11:6:5:1) _whilecontinue_0($1) :
Sample.c(11:7:7:1) iTemp4 [lr7:8]{int}[r2 r3] = @[iTemp6 [lr5:16]{_near * int}[r0]]
Sample.c(11:8:8:1) if iTemp4 [lr7:8]{int}[r2 r3] == 0 goto _whilebreak_0($3)
Sample.c(11:9:14:1) iTemp7 [lr9:13]{_far * int}[DPTR] := _p [lr0:0]{_far * int}
Sample.c(11:10:15:1) _p [lr0:0]{_far * int} = _p [lr0:0]{_far * int} + 0x2 {short}
Sample.c(11:13:18:1) iTemp10 [lr13:14]{int}[r2 r3] = @[iTemp7 [lr9:13]{_far * int}[DPTR]]
Sample.c(11:14:19:1) *(iTemp6 [lr5:16]{_near * int}[r0]) := iTemp10 [lr13:14]{int}[r2 r3]
Sample.c(11:15:12:1) iTemp6 [lr5:16]{_near * int}[r0] = iTemp6 [lr5:16]{_near * int}[r0] + 0x2 {short}
Sample.c(11:16:20:1) goto _whilecontinue_0($1)
Sample.c(11:17:21:0)_whilebreak_0($3) :
Sample.c(12:18:22:0) iTemp2 [lr18:40]{short}[r2] := 0x0 {short}
Sample.c(13:19:23:0) iTemp11 [lr19:40]{short}[r3] := 0x0 {short}
Sample.c(15:20:54:0)preHeaderLbl1($13) :
Sample.c(15:21:56:0) iTemp21 [lr21:38]{short}[r4] := 0x0 {short}
Sample.c(15:22:57:0) iTemp23 [lr22:38]{int}[r5 r6] := 0xa {int}
Sample.c(15:23:58:0) iTemp17 [lr23:38]{int}[r7 r0] := 0x1e {int}
Sample.c(15:24:26:1)_forcond_0($4) :
Sample.c(15:25:27:1) iTemp13 [lr25:26]{char}[CC] = iTemp21 [lr21:38]{short}[r4] < 0xa {short}
Sample.c(15:26:28:1) if iTemp13 [lr25:26]{char}[CC] == 0 goto _forbreak_0($7)
Sample.c(16:27:31:1) iTemp2 [lr18:40]{short}[r2] = iTemp2 [lr18:40]{short}[r2] + ITemp21 [lr21:38]{short}[r4]
Sample.c(17:29:33:1) iTemp15 [lr29:30]{short}[r1] = iTemp21 [lr21:38]{short}[r4] * 0x3 {short}
Sample.c(17:30:34:1) iTemp11 [lr19:40]{short}[r3] = iTemp11 [lr19:40]{short}[r3] + iTemp15 [lr29:30]{short}[r1]
Sample.c(18:32:36:1:1) iTemp17 [lr23:38]{int}[r7 r0]= iTemp17 [lr23:38]{int}[r7 r0]- 0x3 {short}
Sample.c(18:33:37:1) _gint [lr0:0]{int} = _gint [lr0:0]{int} + iTemp17 [lr23:38]{int}[r7 r0]
Sample.c(15:36:42:1) iTemp21 [lr21:38]{short}[r4] = iTemp21 [lr21:38]{short}[r4] + 0x1 {short}
Sample.c(15:37:45:1) iTemp23 [lr22:38]{int}[r5 r6]= iTemp23 [lr22:38]{int}[r5 r6]- 0x1 {short}
Sample.c(19:38:47:1) goto _forcond_0($4)
Sample.c(19:39:48:0)_forbreak_0($7) :
Sample.c(20:40:49:0) iTemp24 [lr40:41]{short}[DPTR] = iTemp2 [lr18:40]{short}[r2] + ITemp11 [lr19:40]{short}[r3]
Sample.c(20:41:50:0) ret iTemp24 [lr40:41]{short}
Sample.c(20:42:51:0)_return($8) :
Sample.c(20:43:52:0) eproc _function [lr0:0]{ ia0 re0 rm0}{function short}

Finally the code generated for this function:

.area DSEG (DATA)
_p::

.ds 2
_gint::

.ds 2
; sample.c 5
; ———————————————-
; function function
; ———————————————-
_function:
; iTemp0 [lr3:5]{_near * int}[r2] = recv

mov r2,dpl
; iTemp6 [lr5:16]{_near * int}[r0] := iTemp0 [lr3:5]{_near * int}[r2]

mov ar0,r2
;_whilecontinue_0($1) :
00101$:
; iTemp4 [lr7:8]{int}[r2 r3] = @[iTemp6 [lr5:16]{_near * int}[r0]]
; if iTemp4 [lr7:8]{int}[r2 r3] == 0 goto _whilebreak_0($3)

mov ar2,@r0
inc r0
mov ar3,@r0
dec r0
mov a,r2
orl a,r3
jz 00103$

00114$:
; iTemp7 [lr9:13]{_far * int}[DPTR] := _p [lr0:0]{_far * int}

mov dpl,_p
mov dph,(_p + 1)

; _p [lr0:0]{_far * int} = _p [lr0:0]{_far * int} + 0x2 {short}
mov a,#0x02
add a,_p
mov _p,a

127

9.1. THE ANATOMY OF THE COMPILER CHAPTER 9. COMPILER INTERNALS

clr a
addc a,(_p + 1)
mov (_p + 1),a

; iTemp10 [lr13:14]{int}[r2 r3] = @[iTemp7 [lr9:13]{_far * int}[DPTR]]
movx a,@dptr
mov r2,a
inc dptr
movx a,@dptr
mov r3,a

; *(iTemp6 [lr5:16]{_near * int}[r0]) := iTemp10 [lr13:14]{int}[r2 r3]
mov @r0,ar2
inc r0
mov @r0,ar3

; iTemp6 [lr5:16]{_near * int}[r0] =
; iTemp6 [lr5:16]{_near * int}[r0] +
; 0x2 {short}

inc r0
; goto _whilecontinue_0($1)

sjmp 00101$
; _whilebreak_0($3) :
00103$:
; iTemp2 [lr18:40]{short}[r2] := 0x0 {short}

mov r2,#0x00
; iTemp11 [lr19:40]{short}[r3] := 0x0 {short}

mov r3,#0x00
; iTemp21 [lr21:38]{short}[r4] := 0x0 {short}

mov r4,#0x00
; iTemp23 [lr22:38]{int}[r5 r6] := 0xa {int}

mov r5,#0x0A
mov r6,#0x00

; iTemp17 [lr23:38]{int}[r7 r0] := 0x1e {int}
mov r7,#0x1E
mov r0,#0x00

; _forcond_0($4) :
00104$:
; iTemp13 [lr25:26]{char}[CC] = iTemp21 [lr21:38]{short}[r4] < 0xa {short}
; if iTemp13 [lr25:26]{char}[CC] == 0 goto _forbreak_0($7)

clr c
mov a,r4
xrl a,#0x80
subb a,#0x8a
jnc 00107$

00115$:
; iTemp2 [lr18:40]{short}[r2] = iTemp2 [lr18:40]{short}[r2] +
; iTemp21 [lr21:38]{short}[r4]

mov a,r4
add a,r2
mov r2,a

; iTemp15 [lr29:30]{short}[r1] = iTemp21 [lr21:38]{short}[r4] * 0x3 {short}
mov b,#0x03
mov a,r4
mul ab
mov r1,a

; iTemp11 [lr19:40]{short}[r3] = iTemp11 [lr19:40]{short}[r3] +
; iTemp15 [lr29:30]{short}[r1]

add a,r3
mov r3,a

; iTemp17 [lr23:38]{int}[r7 r0]= iTemp17 [lr23:38]{int}[r7 r0]- 0x3 {short}
mov a,r7
add a,#0xfd
mov r7,a
mov a,r0
addc a,#0xff
mov r0,a

; _gint [lr0:0]{int} = _gint [lr0:0]{int} + iTemp17 [lr23:38]{int}[r7 r0]
mov a,r7
add a,_gint
mov _gint,a
mov a,r0
addc a,(_gint + 1)
mov (_gint + 1),a

128

9.2. A FEW WORDS ABOUT BASIC BLOCK SUCCESSORS, PREDECESSORS AND DOMINATORSCHAPTER 9. COMPILER INTERNALS

; iTemp21 [lr21:38]{short}[r4] = iTemp21 [lr21:38]{short}[r4] + 0x1 {short}
inc r4

; iTemp23 [lr22:38]{int}[r5 r6]= iTemp23 [lr22:38]{int}[r5 r6]- 0x1 {short}
dec r5
cjne r5,#0xff,00104$
dec r6

; goto _forcond_0($4)
sjmp 00104$

; _forbreak_0($7) :
00107$:
; ret iTemp24 [lr40:41]{short}

mov a,r3
add a,r2
mov dpl,a

; _return($8) :
00108$:

ret

9.2 A few words about basic block successors, predecessors and domina-
tors

Successors are basic blocks that might execute after this basic block.
Predecessors are basic blocks that might execute before reaching this basic block.
Dominators are basic blocks that WILL execute before reaching this basic block.

[basic block 1]
if (something)

[basic block 2]
else

[basic block 3]
[basic block 4]

a) succList of [BB2] = [BB4], of [BB3] = [BB4], of [BB1] = [BB2,BB3]
b) predList of [BB2] = [BB1], of [BB3] = [BB1], of [BB4] = [BB2,BB3]
c) domVect of [BB4] = BB1 ... here we are not sure if BB2 or BB3 was executed but we are SURE that BB1

was executed.

129

Chapter 10

Acknowledgments

http://sdcc.sourceforge.net/#Who

Thanks to all the other volunteer developers who have helped with coding, testing, web-page creation, dis-
tribution sets, etc. You know who you are :-)

Thanks to Sourceforge http://sourceforge.net/ which has hosted the project since 1999 and do-
nates significant download bandwidth.

Also thanks to all SDCC Distributed Compile Farm members for donating CPU cycles and bandwidth for
snapshot builds.

This document was initially written by Sandeep Dutta and updated by SDCC developers.
All product names mentioned herein may be trademarks of their respective companies.

Alphabetical index
To avoid confusion, the installation and building options for SDCC itself (chapter 2) are not part of the index.

130

http://sdcc.sourceforge.net/#Who
http://sourceforge.net/

Index

--Werror, 36
--acall-ajmp, 38, 119
--all-callee-saves, 35
--allow-unsafe-read, 34
--c1mode, 34
--callee-saves, 35, 70
--code-loc <Value>, 37, 43
--code-size <Value>, 38, 43
--codeseg <Value>, 36
--compile-only, 34
--constseg <Value>, 36
--cyclomatic, 35
--data-loc <Value>, 37, 43
--debug, 30, 34, 35, 85, 98
--disable-warning, 35
--dump-ast, 39
--dump-graphs, 39
--dump-i-code, 39
--dumpall, 108
--fdollars-in-identifiers, 36
--float-reent, 35
--fomit-frame-pointer, 34
--fsigned-char, 35
--i-code-in-asm, 35
--idata-loc <Value>, 37
--int-long-reent, 35, 50, 58
--iram-size <Value>, 38, 43, 69
--less-pedantic, 35
--lib-path <path>, 37
--max-allocs-per-node, 34
--model-huge, 38
--model-large, 38, 39, 59
--model-medium, 37, 39
--model-small, 37, 39
--more-pedantic, 36
--no-c-code-in-asm, 35
--no-gen-comments, 39
--no-peep, 34
--no-peep-comments, 35
--no-peep-return, 34
--no-ret-without-call, 38
--no-std-crt0, 72, 96
--no-xinit-opt, 33, 69
--no-zp-spill, 39
--nogcse, 33
--noinduction, 33
--noinvariant, 33

--nolabelopt, 33
--noloopreverse, 33
--nolospre, 34
--nooverlay, 34
--nostdinc, 35
--nostdlib, 35
--nostdlibcall, 34
--opt-code-size, 34
--opt-code-speed, 34
--out-fmt-ihx, 37
--out-fmt-s19, 30, 37
--peep-asm, 34, 56
--peep-file, 34, 118
--peep-return, 34
--print-search-dirs, 23, 36
--stack-auto, 35, 38, 48, 50, 58, 61, 63
--stack-loc <Value>, 37, 43
--stack-size <Value>, 38
--std-c11, 10, 27
--std-c23, 10, 27
--std-c89, 10, 26, 36
--std-c95, 27
--std-c99, 10, 27
--std-sdcc11, 36
--std-sdcc17, 36
--std-sdcc23, 36
--std-sdcc89, 36
--std-sdcc99, 36
--syntax-only, 34
--use-non-free, 8, 36, 80, 86, 88
--use-stdout, 36, 39
--vc, 36, 39
--verbose, 35
--version, 34
--xdata-loc<Value>, 43
--xram-loc <Value>, 37
--xram-size <Value>, 38, 43
--xstack, 38, 41, 61
--xstack-loc <Value>, 37
-Aquestion(answer), 33
-C, 33
-D<macro[=value]>, 33
-E, 33, 34
-I<path>, 33
-L <path>, 37
-M, 33
-MM, 33

131

INDEX INDEX

-S, 35
-Umacro, 33
-V, 35
-Wa asmOption[,asmOption], 36
-Wl linkOption[,linkOption], 37
-Wp preprocessorOption[,preprocessorOption], 33
-c, 34
-dD, 33
-dM, 33
-dN, 33
-mds390, 32
-mds400, 32
-mez80_z80, 32
-mhc08, 32
-mmcs51, 32
-mmos6502, 32
-mmos65c02, 32
-mpdk13, 32
-mpdk14, 32
-mpdk15, 32
-mpic14, 32
-mpic16, 32
-mr2k, 32
-mr3ka, 32
-ms08, 32
-msm83, 32
-mstm8, 32
-mtlcs90, 32
-mz180, 32
-mz80, 32
-o <path/file>, 34
-v, 34
-x <type>, 34
<NO FLOAT>, 59, 89
<file>.adb, 30, 98
<file>.asm, 30
<file>.cdb, 30, 98
<file>.dump*, 30
<file>.ihx, 30
<file>.lib, 31
<file>.lnk, 31
<file>.lst, 30, 46
<file>.map, 30, 44, 46
<file>.mem, 30, 44
<file>.omf, 30
<file>.rel, 30–32
<file>.rst, 30, 46
<file>.sym, 30
<stdio.h>, 59
~ Operator, 10
~ Operator, 104
8031, 8032, 8051, 8052, mcs51 CPU, 7

Absolute addressing, 46, 48
ACC (mcs51, ds390 register), 69
__addressmod, 45
Aligned array, 46, 54

Annotated syntax tree, 122
Any Order Bit, 116
AOMF, AOMF51, 30, 35, 97, 98
Application notes, 107
__asm, 52, 54–57
Assembler documentation, 55, 105
Assembler listing, 30
Assembler options, 36
Assembler routines, 52, 53, 69, 118
Assembler routines (non-reentrant), 70
Assembler routines (reentrant), 71
Assembler source, 30
at, 48
__at, 42, 44, 46, 47, 54
atomic, 49, 52, 53

B (mcs51, ds390 register), 69
backfill unused memory, 31
banked, 67
Bankswitching, 66
Basic blocks, 128
Binary constants, 47
bit, 37, 43, 104
__bit, 10, 42, 46, 47
Bit rotation, 115
Bit shifting, 115
Bit toggling, 10
bit-fields, 42
block boundary, 46
Boost Software License 1.0 (BSL-1.0), 9
Bug reporting, 108
Building SDCC, 18
Byte swapping, 116

C FAQ, 107
C Reference card, 107
Carry flag, 42
Changelog, 109
checksum, 31
cmake, 106
code, 36, 37
__code, 41
code banking, 66
code page (pic14), 79
Command Line Options, 32
Communication

Bug report, 108
Feature request, 109
Forums, 106
Mailing lists, 106, 109
Monitor, 106
Patch submission, 109
RSS feed, 106
Trackers, 106
wiki, 106

Compatibility with previous versions, 9
Compiler internals, 122

132

INDEX INDEX

compiler.h (include file), 42, 104
const, 36
Copy propagation, 112
cpp, see sdcpp, see sdcpp
critical, 51
__critical, 51
Cyclomatic complexity, 35, 120

d52, 106
d52 (disassembler), 106
__data (hc08 named address space), 44, 45
__data (mcs51, ds390 named address space), 37, 40, 43
DDD (debugger), 101, 106
Dead-code elimination, 111, 125
Debugger, 30, 98
#defines, 65
Defines created by the compiler, 65
DESTDIR, 16
Division, 48
Documentation, 22, 105
double (not supported), 26, 27
download, 108
doxygen (source documentation tool), 106
DPTR, 66, 69, 116
DPTR, DPH, DPL, 69, 70
DS390, 38

Options
--model-flat24, 38
--protect-sp-update, 38
--stack-10bit, 38
--stack-probe, 38
--tini-libid, 38
--use-accelerator, 38

DS390 memory model, 61
DS400, 71
DS80C390, 32
DS80C400, 32, 71, 107
DS89C4x0, 107
dynamic memory allocation (malloc), 60

ELF format, 37
Emacs, 101
__endasm, 52, 54–57
Endianness, 104, 116
Environment variables, 40
Examples, 110
External stack (mcs51), 61

__far (named address space), 41, 54
Feature request, 109
Flags, 42
Flat 24 (DS390 memory model), 61
Floating point support, 26, 27, 50, 58, 59
FPGA (field programmable gate array), 22
FpgaC ((subset of) C to FPGA compiler), 22
function epilogue, 35, 56
function parameter, 48, 70, 71

function pointer, 43
function pointers, 70
function prologue, 35, 56, 62

GBZ80
Options

-ba <Num>, 39
-bo <Num>, 39

gcc (GNU Compiler Collection), 33
gdb, 98
generic pointer, 69
getchar(), 59
GPLv2 license, 9
GPLv2+LE, 8, 60
GPLv3 license, 9
gpsim (pic simulator), 106
gputils (pic tools), 80, 106

HC08, 32, 37, 44, 50, 77
interrupt, 50, 52
Options

--out-fmt-elf, 37
HD64180 (see Z180), 44
Header files, 42, 104, 105
heap (malloc), 60
Higher Order Byte, 117
Higher Order Word, 117

I/O memory (Z80, Z180), 44
ICE (in circuit emulator), 97
iCode, 39, 122–125
__idata (mcs51, ds390 named address space), 37, 41, 43
IDE, 36, 107
Include files, 42, 104, 105
indent (source formatting tool), 106
Infineon, 38
Install paths, 16
Install trouble-shooting, 23
Installation, 13
instruction cycles (count), 106
Intel hex format, 30, 37, 98
Intermediate dump options, 39
interrupt, 43, 49–54, 56, 58, 62, 63
__interrupt, 43, 49, 56
interrupt jitter, 52
interrupt latency, 52
interrupt mask, 52
interrupt priority, 52, 53
interrupt vector table, 37, 49, 50, 63
interrupts, 53
intrinsic named address space, 48, 61

jump tables, 113

K&R style, 26

Labels, 57
LGPLv2.1 license, 9

133

INDEX INDEX

Libraries, 31, 35, 37, 43, 58, 60
Linker, 31
Linker documentation, 105
Linker options, 37
lint (syntax checking tool), 36, 97
little-endian, 116
Live range analysis, 121, 122, 125
local variables, 48, 61, 104
lock, 52
Loop optimization, 112, 125
Loop reversing, 33, 113

mailing list, 106
Mailing list(s), 108, 109
Makefile, 106
malloc.h, 60
MCS51, 32
MCS51 memory, 43
MCS51 memory model, 61
MCS51 options, 37
MCS51 variants, 66, 118
Memory bank (pic14), 79
Memory map, 30, 104
Memory model, 42, 48, 61, 62
Microchip, 78, 82
MOS6502, 45, 95, 96
MOS6502 memory models, 62
MOS6502 options, 39
Motorola S19 format, 30, 37
MSVC output style, 36
msys, 20
msys2, 20
Multiplication, 48, 113, 125

naked, 70
__naked, 56, 62
_naked, 56, 62
Naked functions, 56
__near (named address space), 40
Nibble swapping, 116
Non-intrinsic named address spaces, 45

objdump (tool), 30, 106
Object file, 30
Optimization options, 33
Optimizations, 111, 122
Options assembler, 36
Options DS390, 38
Options GBZ80, 39
Options intermediate dump, 39
Options linker, 37
Options MCS51, 37
Options MOS6502, 39
Options optimization, 33
Options other, 34
Options PIC16, 84
Options preprocessor, 33

Options processor selection, 32
Options SDCC configuration, 13
Options STM8, 39
Options Z80, 39
Oscilloscope, 97
Overlaying, 48

P2 (mcs51 sfr), 41, 61, 66
packihx (tool), 30, 105
Parameter passing, 69
Parameters, 48
Parsing, 122
Patch submission, 108–110
__pdata (mcs51, ds390 named address space), 37, 38,

41, 61, 66
PDF version of this document, 22
pedantic, 35, 36, 62
Peephole optimizer, 34, 56, 118
PIC, 82
PIC14, 32, 78, 82

Environment variables
SDCC_PIC14_SPLIT_LOCALS, 81

interrupt, 80
Options

--debug-extra, 81
--no-pcode-opt, 81
--stack-loc, 81
--stack-size, 81
--use-non-free, 81

PIC16, 32, 82, 86, 88, 89, 91, 92, 105
Defines

pic18fxxxx, 86
__pic18fxxxx, 86
STACK_MODEL_nnn, 86

Environment variables
NO_REG_OPT, 86
OPTIMIZE_BITFIELD_POINTER_GET, 86

Header files, 88
interrupt, 91
Libraries, 89
MPLAB, 85
Options

--callee-saves, 84
--use-non-free, 84

Pragmas
#pragma code, 87
#pragma config, 88
#pragma library, 87
#pragma stack, 87
#pragma udata, 87

shadowregs, 91
stack, 90, 95
wparam, 91

Pointer, 42, 43
#pragma callee_saves, 35, 62
#pragma codeseg, 63
#pragma constseg, 63

134

INDEX INDEX

#pragma disable_warning, 63
#pragma exclude, 57, 62
#pragma less_pedantic, 62
#pragma nogcse, 33, 63, 64
#pragma noinduction, 33, 63, 65, 112
#pragma noinvariant, 33, 63
#pragma noiv, 63
#pragma noloopreverse, 63
#pragma nooverlay, 48, 50, 63
#pragma opt_code_balanced, 63
#pragma opt_code_size, 63
#pragma opt_code_speed, 63
#pragma preproc_asm, 63
#pragma restore, 62, 65
#pragma save, 62, 64
#pragma sdcc_hash, 64
#pragma stackauto, 48, 63
#pragma std_c11, 63
#pragma std_c23, 63
#pragma std_c89, 63
#pragma std_c99, 63
#pragma std_sdcc11, 63
#pragma std_sdcc23, 63
#pragma std_sdcc89, 63
#pragma std_sdcc99, 63
Pragmas, 62
Preprocessor, 25, 34, 63

Options, 33
PIC16 Macros, 86

printf(), 59, 60
floating point support, 59
parameters, 104
PIC16, 94
PIC16 Floating point support, 89
PIC16 floating point support, 89
printf_fast() (mcs51), 59
printf_fast_f() (mcs51), 59
printf_small(), 59
printf_tiny() (mcs51), 59
putchar(), 59, 104

Processor selection options, 32
project workspace, 106
promotion to signed int, 54, 103
push/pop, 55, 57, 62
putchar(), 59

Quality control, 109

reentrant, 35, 48, 58, 61, 70, 71
Register allocation, 112, 122, 125
register bank (mcs51, ds390), 43, 48, 53
Register-Allocation, 118
Regression test, 105, 109, 110
Regression test (PIC14), 110
Regression test (PIC16), 95
Related tools, 106
Release policy, 109

Reporting bugs, 108
Requesting features, 109
return value, 26, 27, 69
rotating bits, 115
RSS feed, 106
Runtime library, 67

S08, 32
s51 (simulator), 25
sbit, 42
__sbit, 10
sdar, 32
sdas (sdasgb, sdas6808, sdas8051, sdasz80), 7, 55, 105
SDCC

Defines
__SDCC (version macro), 65
__SDCC_ds390, 65
__SDCC_mcs51, 65
__SDCC_pic16, 86
__SDCC_z80, 65
SDCC_ALL_CALLEE_SAVES, 65
SDCCCALL, 65
SDCC_FLOAT_REENT, 65
SDCC_INT_LONG_REENT, 65
SDCC_MODEL_FLAT24 (ds390), 65
SDCC_MODEL_LARGE, 65
SDCC_MODEL_MEDIUM, 65
SDCC_MODEL_SMALL, 65
SDCC_OPTIMIZE_SIZE, 65
SDCC_OPTIMIZE_SPEED, 65
SDCC_PARMS_IN_BANK1, 65
SDCC_REVISION (svn revision number), 65
SDCC_STACK_AUTO, 65
SDCC_STACK_TENBIT (ds390), 65
SDCC_USE_XSTACK, 65

Environment variables
NO_REG_OPT, 86
OPTIMIZE_BITFIELD_POINTER_GET

(PIC16), 86
SDCC_HOME, 40
SDCC_INCLUDE, 40
SDCC_LEAVE_SIGNALS, 40
SDCC_LIB, 40
SDCC_PIC14_SPLIT_LOCALS, 81
TMP, TEMP, TMPDIR, 40
undocumented, 40

SDCC Wiki, 109
__sdcc_external_startup, 47
SDCDB (debugger), 25, 98, 105, 106
sdcpp (preprocessor), 25, 33, 63
sdld, 7, 105
Search path, 16
semaphore, 52
sfr, 66
__sfr, 42, 44, 45
__sfr16, 42, 45
__sfr32, 42

135

INDEX INDEX

shc08 (simulator), 25
signal handler, 40
sloc (spill location), 33
SM83, 39
sm83 (GameBoy Z80), 32, 72
splint (syntax checking tool), 36, 97, 106
srecord (bin, hex, ... tool), 30, 37, 106
sstm8 (simulator), 25
stack, 35, 41, 43, 48–52, 61, 112
stack overflow, 49
Standard-compliance, 9, 26
static, 48
Status of documentation, 8, 22
STM8, 7
STM8 memory models, 61
STM8 options, 39
Strength reduction, 112, 125
struct, 26, 27
Subexpression, 113
Subexpression elimination, 33, 111
Subversion code repository, 108, 109
Support, 108
swapping nibbles/bytes, 115
switch statement, 113
Symbol listing, 30
sz80 (simulator), 25

tabulator spacing (8 columns), 20
Tinibios (DS390), 61
Tools, 104
Trademarks, 129
type conversion, 10
type promotion, 10, 50, 54, 103
Typographic conventions, 9

uCsim, 105
union, 26, 27
UnxUtils, 20
USE_FLOATS, 59
using (mcs51, ds390 register bank), 50, 53
__using (mcs51, ds390 register bank), 43, 49, 50, 53

vararg, va_arg, 10, 104
Variable initialization, 33, 46
version, 22, 109
version macro, 65
volatile, 46, 49, 52, 56, 104
VPATH, 21

Warnings, 35
watchdog, 69, 104
wiki, 106, 109, 121

__xdata (hc08 named address space), 44, 45
__xdata (mcs51, ds390 named address space, 69
__xdata (mcs51, ds390 named address space), 37, 41,

43, 46
XEmacs, 101

_XPAGE (mcs51), 66
xstack, 37

Z180, 32, 44
I/O memory, 44
Options

--portmode, 44
Pragmas

#pragma portmode, 44
Z80, 32, 39, 44, 50, 72

I/O memory, 44
interrupt, 50
Options

--asm=<Value>, 39
--callee-saves-bc, 38
--codeseg <Value>, 38
--constseg <Value>, 38
--fno-omit-frame-pointer, 39
--no-std-crt0, 38
--portmode=<Value>, 39
--reserve-regs-iy, 39

Z80, Z180, SM83, Rabbit 2000/3000, Rabbit 3000A
CPU, 7

zlib/libpng License, 9

136

	Introduction
	About SDCC
	SDCC Suite Licenses
	Documentation
	Typographic conventions
	Compatibility with previous versions
	System Requirements
	Other Resources

	Installing SDCC
	Configure Options
	Install paths
	Search Paths
	Building SDCC
	Building SDCC on Linux
	Building SDCC on Mac OS X
	Cross compiling SDCC on Linux for Windows
	Building SDCC using Cygwin and Mingw32
	Building SDCC Using Microsoft Visual C++ 2010 (MSVC)
	Windows Install Using a ZIP Package
	Windows Install Using the Setup Program
	VPATH feature

	Building the Documentation
	Reading the Documentation
	Testing the SDCC Compiler
	Install Trouble-shooting
	If SDCC does not build correctly
	What the ”./configure” does
	What the ”make” does
	What the ”make install” command does.

	Components of SDCC
	sdcc - The Compiler
	sdcpp - The C-Preprocessor
	sdas, sdld - The Assemblers and Linkage Editors
	ucsim_51, ucsim_z80, ucsim_stm8 etc. - The Simulators
	sdcdb - Source Level Debugger

	Using SDCC
	Standard-Compliance
	ISO C90 and ANSI C89
	ISO C95
	ISO C99
	ISO C11 and ISO C17
	ISO C23
	Embedded C
	Implementation-defined behavior
	Translation
	Environment
	Identifiers
	Characters
	Integers
	Floating point
	Arrays and Pointers
	Hints
	Structures, unions, enumerations and bit-fields
	Qualifiers
	Preprocessing directives
	Library functions
	Architecture

	Compiling
	Single Source File Projects
	Postprocessing the Intel Hex file
	Projects with Multiple Source Files
	Projects with Additional Libraries
	Using sdar to Create and Manage Libraries

	Command Line Options
	Processor Selection Options
	Preprocessor Options
	Optimization Options
	Other Options
	Linker Options
	MCS51 Options
	DS390 / DS400 Options
	Options common to all z80-related ports (z80, z180, r2k, r3ka, sm83, tlcs90, ez80_z80)
	Z80 Options (apply to z80, z180, r2k, r3ka, tlcs90, ez80_z80)
	SM83 Options
	STM8 Options
	MOS6502 Options (apply to mos6502, mos65c02)
	Intermediate Dump Options
	Redirecting output on Windows Shells

	Environment variables
	SDCC Language Extensions
	MCS51/DS390 intrinsic named address spaces
	__data / __near
	__xdata / __far
	__idata
	__pdata
	__code
	__bit
	__sfr / __sfr16 / __sfr32 / __sbit
	Pointers to MCS51/DS390 intrinsic named address spaces
	Notes on MCS51 memory layout

	Z80/Z180/eZ80 intrinsic named address spaces
	__sfr (in/out to 8-bit addresses)
	__banked __sfr (in/out to 16-bit addresses)
	__sfr (in0/out0 to 8 bit addresses on Z180/HD64180)

	SM83 intrinsic named address spaces
	__sfr

	HC08/S08 intrinsic named address spaces
	__data
	__xdata

	PDK14/PDK15 intrinsic named address spaces
	__sfr
	__sfr16

	MOS6502 intrinsic named address spaces
	__zp/__data /__near
	__xdata /__far

	Non-intrinsic named address spaces
	Absolute Addressing
	__sdcc_external_startup
	Preserved register specification
	Binary constants
	Returning void
	Omitting promotion on arguments of vararg function (does not apply to pdk13, pdk14, pdk15)

	Parameters and Local Variables
	Overlaying
	Interrupt Service Routines
	General Information
	Common interrupt pitfall: variable not declared volatile
	Common interrupt pitfall: non-atomic access
	Common interrupt pitfall: stack overflow
	Common interrupt pitfall: use of non-reentrant functions

	MCS51/DS390 Interrupt Service Routines
	HC08 Interrupt Service Routines
	Z80, Z180 and eZ80 Interrupt Service Routines
	Rabbit 2000, 3000 and 3000A Interrupt Service Routines
	SM83 and TLCS-90 Interrupt Service Routines
	STM8 Interrupt Service Routines

	Enabling and Disabling Interrupts
	Critical Functions and Critical Statements
	Enabling and Disabling Interrupts directly
	Semaphore locking (mcs51/ds390)

	Functions using private register banks (mcs51/ds390)
	Inline Assembler Code
	Inline Assembler Code Formats
	Old __asm ... __endasm; Format
	New __asm__ (”inline_assembler_code”) Format

	A Step by Step Introduction
	Naked Functions
	Use of Labels within Inline Assembler

	Support routines for integer multiplicative operators
	Floating Point Support
	Library Routines
	Compiler support routines (_gptrget, _mulint etc.)
	Stdclib functions (puts, printf, strcat etc.)
	<stdio.h>
	<malloc.h>

	Math functions (sinf, powf, sqrtf etc.)
	<math.h>

	Other libraries

	Memory Models
	MCS51 Memory Models
	Small, Medium, Large and Huge
	External Stack

	DS390 Memory Model
	STM8 Memory Models
	MOS6502 Memory Models

	Pragmas
	Defines Created by the Compiler

	Notes on supported Processors
	MCS51 variants
	pdata access by SFR
	Other Features available by SFR
	Bankswitching
	Hardware
	Software

	MCS51/DS390 Startup Code
	Interfacing with Assembler Code
	Global Registers used for Parameter Passing
	Register usage
	Assembler Routine (non-reentrant)
	Assembler Routine (reentrant)

	DS400 port
	The Z80, Z180, Rabbit 2000, Rabbit 2000A, Rabbit 3000A, SM83 (GameBoy), eZ80, TLCS-90 and R800 ports
	Startup Code
	Rabbit ports
	Rabbit wait states

	Z80, Z180, Z80N and R800 calling conventions
	Z80 SDCC calling convention, version 1
	Z80 SDCC calling convention, version 0

	Rabbit 2000, Rabbit 2000A, Rabbit 3000A, eZ80 and TLCS-90 calling conventions
	Rabbit SDCC calling convention, version 1

	SM83 calling conventions
	SM83 SDCC calling convention, version 1
	SM83 SDCC calling convention, version 0

	Small-C calling convention
	Complex instructions
	Unsafe reads
	Z80 banked calls

	The HC08 and S08 ports
	Startup Code

	The STM8 port
	Calling conventions
	SDCC calling convention, version 1
	SDCC calling convention, version 0
	Raisonance calling convention
	IAR calling convention
	Cosmic calling convention

	The PIC14 port
	PIC Code Pages and Memory Banks
	Adding New Devices to the Port
	Interrupt Code
	Configuration Bits
	Linking and Assembling
	Command-Line Options
	Environment Variables
	The Library
	Enhanced cores
	Accessing bits of special function registers
	Naming of special function registers
	error: missing definition for symbol ``__gptrget1''
	Processor mismatch in file ``XXX''.

	Known Bugs
	Function arguments
	Regression tests fail

	The PIC16 port
	Global Options
	Port Specific Options
	Code Generation Options
	Optimization Options
	Assembling Options
	Linking Options
	Debugging Options

	Environment Variables
	Preprocessor Macros
	Directories
	Pragmas
	Header Files and Libraries
	Header Files
	Libraries
	Adding New Devices to the Port
	Memory Models
	Stack
	Functions
	Function return values
	Interrupts
	Generic Pointers
	Configuration Bits
	PIC16 C Libraries
	Standard I/O Streams
	Printing functions
	Signals

	PIC16 Port – Tips
	Stack size

	Known Bugs
	Extended Instruction Set
	Regression Tests

	The MOS6502 port
	Startup Code

	Debugging
	Debugging with SDCDB
	Compiling for Debugging
	How the Debugger Works
	Starting the Debugger SDCDB
	SDCDB Command Line Options
	SDCDB Debugger Commands
	Interfacing SDCDB with DDD
	Interfacing SDCDB with XEmacs

	Debugging with other debuggers (e.g. GDB): ELF / DWARF

	TIPS
	Porting code from or to other compilers
	Tools included in the distribution
	Documentation included in the distribution
	Communication online at SourceForge
	Related open source tools
	Related documentation / recommended reading
	Application notes specifically for SDCC
	Some Questions

	Support
	Reporting Bugs
	Requesting Features
	Submitting patches
	Getting Help
	ChangeLog
	Subversion Source Code Repository
	Release policy
	Quality control
	Examples
	Use of SDCC in Education

	SDCC Technical Data
	Optimizations
	Sub-expression Elimination
	Dead-Code Elimination
	Copy-Propagation
	Loop Optimizations
	Loop Reversing
	Algebraic Simplifications
	'switch' Statements
	Bit-shifting Operations.
	Bit-rotation
	Nibble and Byte Swapping
	Getting a Bit
	Higher Order Byte / Higher Order Word
	Placement of Bank-Selection Instructions
	Lifetime-Optimal Speculative Partial Redundancy Elimination
	Register Allocation
	Peephole Optimizer

	Cyclomatic Complexity
	Retargetting for other Processors

	Compiler internals
	The anatomy of the compiler
	A few words about basic block successors, predecessors and dominators

	Acknowledgments

